前言:想要寫出一篇引人入勝的文章?我們特意為您整理了科技期刊選題策劃人工智能應(yīng)用策略范文,希望能給你帶來靈感和參考,敬請閱讀。
關(guān)鍵詞:人工智能;選題策劃;科技期刊;應(yīng)對策略
《2018—2019中國數(shù)字出版產(chǎn)業(yè)年度報告》中指出,人工智能技術(shù)在出版領(lǐng)域的應(yīng)用日趨深入[1],最直接的表現(xiàn)在于人工智能技術(shù)將改變出版行業(yè)長久以來模式化、規(guī)律化的生產(chǎn)運營方式,提高出版效率,提升知識服務(wù)能力.研究人工智能技術(shù)與出版融合發(fā)展的落腳點和著力點在于人工智能在學(xué)術(shù)出版領(lǐng)域的應(yīng)用.向颯[2]認為人工智能不僅可以加速學(xué)術(shù)傳播,在選題策劃、編輯出版、生產(chǎn)印刷、營銷發(fā)行等方面再造學(xué)術(shù)出版流程,還可以顯著提升學(xué)術(shù)出版的知識服務(wù)能力.劉銀娣[3]認為人工智能可以應(yīng)用在反剽竊和同行評審專家匹配、智能學(xué)術(shù)搜索以及智能文獻計量等環(huán)節(jié).劉平等[4]介紹了借助人工智能的智慧出版模式,包括從選題策劃、內(nèi)容生產(chǎn)到閱讀體驗及內(nèi)容服務(wù)等過程.江雨蓮等[5]指出人工智能在醫(yī)學(xué)期刊編輯出版中的應(yīng)用包括選題策劃與組稿、論文初審與同行評議、編輯加工、排版與校對等方面.然而,現(xiàn)有研究[2-7]大多是概述人工智能在內(nèi)容生產(chǎn)到內(nèi)容推送全流程中的潛在應(yīng)用,鮮有專門探討人工智能應(yīng)用于選題策劃的研究.選題策劃是出版物編輯過程的最初階段,也是影響出版物發(fā)展前景的至關(guān)重要階段[8].探討人工智能應(yīng)用于選題策劃是研究人工智能技術(shù)與學(xué)術(shù)出版融合發(fā)展的重要一環(huán).本文將列舉人工智能在科技期刊選題策劃中的優(yōu)勢和可用于選題策劃的人工智能產(chǎn)品,探討人工智能選題策劃面臨的挑戰(zhàn)及編輯的應(yīng)對策略,以期為科技期刊應(yīng)用人工智能進行選題策劃提供參考.
1人工智能選題策劃的優(yōu)勢及可用產(chǎn)品
科技期刊選題策劃的方式方法與圖書等出版物相比存在一些差異,它主要是根據(jù)當前學(xué)科熱點及焦點問題,結(jié)合讀者需求,制定具有前瞻性、引導(dǎo)性、實用性的選題方向、選題形式及內(nèi)容,然后進行多途徑組稿約稿,策劃專題專欄、??踔撂乜瘉韺崿F(xiàn)選題優(yōu)化,強化期刊品牌特色,推進學(xué)科發(fā)展.
1.1人工智能在科技期刊選題策劃中的優(yōu)勢
1.1.1提高選題策劃的效率和準確性傳統(tǒng)的選題策劃主要依靠編委和編輯的知識積累、經(jīng)驗以及對學(xué)科方向的預(yù)見和主觀判斷來尋找有價值的選題,這種方式耗時費力,并且容易忽略非常有價值的選題.利用人工智能獲取選題離不開人工智能學(xué)術(shù)搜索工具.2020年5月,清華大學(xué)人工智能研究院等單位聯(lián)合了報告《人工智能之學(xué)術(shù)搜索》[9],該報告中指出,與以往的學(xué)術(shù)搜索引擎(例如開放式互聯(lián)網(wǎng)學(xué)術(shù)搜索引擎)相比,人工智能學(xué)術(shù)搜索引擎不再局限于單純地為用戶提供文獻檢索的簡單功能(例如關(guān)鍵詞搜索、模型化計量等)來逐層過濾相關(guān)度不高的論文,而是將大數(shù)據(jù)、深度學(xué)習(xí)技術(shù)應(yīng)用到信息篩選過程中,基于大數(shù)據(jù)、深度學(xué)習(xí)的檢索系統(tǒng)能從海量數(shù)據(jù)中快速提取有效信息并進行科學(xué)統(tǒng)計分析,同時理解查詢者的需求和文獻的意思.人工智能可深度挖掘讀者需求,通過讀者行為(閱讀、評論、下載、轉(zhuǎn)發(fā)等)捕捉讀者研究背景和研究興趣;還可以根據(jù)學(xué)科領(lǐng)域內(nèi)的熱門事件和熱點、前沿問題進行智能分析比對,快速推測出哪些內(nèi)容更具前瞻性和話題性,有效提高選題策劃的效率.人工智能選題策劃是在開放的互聯(lián)網(wǎng)上進行的,搜索范圍更廣、內(nèi)容更豐富,獲得的選題方向更全面、準確.由《紐時時報》數(shù)字部門的科學(xué)團隊研發(fā)的機器人Blossomblot,是基于協(xié)作工具Slack軟件上的一個虛擬智能機器人,它可以對社交網(wǎng)絡(luò)的海量文章進行大數(shù)據(jù)分析,預(yù)測哪些內(nèi)容更有話題性,幫助編輯挑選出適合推送的素材.據(jù)《紐時時報》的統(tǒng)計數(shù)據(jù),經(jīng)Blossomblot篩選后推薦的文章點擊量是普通文章的38倍[10].
1.1.2提升約稿對象的匹配度隨著科學(xué)技術(shù)的發(fā)展,學(xué)科間的交叉融合越來越多,學(xué)者進行跨學(xué)科研究的現(xiàn)象非常普遍;青年學(xué)者的學(xué)術(shù)影響力較弱.這些因素都可能導(dǎo)致編委或編輯不能準確、及時地獲取潛在約稿專家的信息及他們的科研動態(tài).人工智能可協(xié)助期刊編委及編輯尋找潛在的約稿專家.與傳統(tǒng)的約稿方式(如在編輯部已有專家?guī)熘羞x擇、其他專家推薦等)相比,借助大數(shù)據(jù)技術(shù)、知識圖譜技術(shù)、圖像識別技術(shù)甚至聲紋識別技術(shù)等,人工智能可在海量信息中檢索并標記可能相關(guān)的學(xué)術(shù)動態(tài)信息及其研究者,具有元數(shù)據(jù)結(jié)構(gòu)的機器可“讀取”、描述這些科學(xué)人物,并對他們的研究成果相關(guān)性及研究質(zhì)量進行搜索、分析和排序,估算這些研究者的學(xué)術(shù)影響力.比如,人工智能可以快速搜索相關(guān)領(lǐng)域重要學(xué)術(shù)會議的特邀專家、重大科研項目的第一責任人、省部級科技獎項獲得者等,分析這些研究者及所在課題組的科研軌跡和當前的研究方向,分析他們的科研產(chǎn)出,估算他們的科研活躍度;同時,通過學(xué)者關(guān)系網(wǎng)絡(luò)圖譜智能搜索與這些科學(xué)家合作密切的其他研究者.此外,人工智能還可根據(jù)當次約稿結(jié)果生成新的訓(xùn)練數(shù)據(jù),為下一次選題策劃、組稿約稿提供參考.人工智能賦能的學(xué)術(shù)搜索工具AMiner可采用知識圖譜技術(shù)結(jié)合人工智能技術(shù)自動生成全球人工智能領(lǐng)域最有影響力的學(xué)者榜單、全球計算機領(lǐng)域高校排名、全球?qū)W術(shù)會議綜合指數(shù)及排名等學(xué)術(shù)榜單,幫助編委和編輯在交叉領(lǐng)域和新興熱點領(lǐng)域?qū)ふ胰蚍秶鷥?nèi)合適的約稿對象[9].
1.2可用于選題策劃的人工智能產(chǎn)品表1列舉了6個目前國內(nèi)外主要的基于人工智能技術(shù)開發(fā)的學(xué)術(shù)搜索工具(按年份排序),這些人工智能產(chǎn)品可應(yīng)用于科技期刊選題策劃的不同環(huán)節(jié)中.AMiner具有研究者語義信息抽取、面向話題的專家搜索、權(quán)威機構(gòu)搜索、話題發(fā)現(xiàn)和趨勢分析、基于話題的社會影響力分析、研究者社會網(wǎng)絡(luò)關(guān)系識別等功能[9].Meta可以根據(jù)用戶的搜索歷史,找出與其研究項目相關(guān)的最新論文,而非只是同行評審分數(shù)最高、引用最多的論文,并創(chuàng)建可以展示所有已論文之間關(guān)系的知識圖譜[3],甚至可以預(yù)測科研人員研究領(lǐng)域未來的動向.Yewno能夠幫助研究者建立跨領(lǐng)域概念之間的相互聯(lián)系,并發(fā)掘知識內(nèi)在的深層次聯(lián)系;還可通過語義分析等技術(shù)將出版物分解為獨立的內(nèi)容,形成細顆粒度的知識結(jié)構(gòu);同時支持學(xué)術(shù)機構(gòu)和專業(yè)出版機構(gòu)建立自己的知識圖譜[11].SemanticScholar可自動篩選論文關(guān)鍵詞、關(guān)鍵段,輔助研究者快速理解論文內(nèi)容;通過評估論文內(nèi)容的相關(guān)度來實現(xiàn)搜索結(jié)果的快速排序[2];還可以搜索指定主題的相關(guān)論文并判斷論文的價值[9].與利用關(guān)鍵詞搜索的方式不同,Iris.ai通過對用戶輸入的字段或論文摘要中的關(guān)鍵詞進行機器學(xué)習(xí),結(jié)合該字段或關(guān)鍵詞在段落中的具體含義,通過算法將這些帶有語境的概念分類集群,最終為研究者篩選出更為相關(guān)的文獻資料[12].Sparrho利用人工智能結(jié)合人類智慧,能分析理解用戶需求,通過動態(tài)饋送和專家管理公告欄,幫助研究者了解各學(xué)科領(lǐng)域的最新出版物[13].
2人工智能選題策劃面臨的挑戰(zhàn)
人工智能為科技期刊選題策劃帶來便利的同時,在實際應(yīng)用中也面臨著諸多挑戰(zhàn),主要集中在以下幾個方面.(1)選題的同質(zhì)性.傳統(tǒng)的選題策劃主要依靠編委、編輯的智力勞動來完成,他們通過深度的思考和縝密的邏輯分析深入研究選題,甚至在對立的觀點之間尋求創(chuàng)意,由此找到極具價值的選題,這一過程充分發(fā)揮了人的主觀能動性.而基于人工智能的選題策劃更依賴于機器智慧對已有知識進行學(xué)習(xí)和積累,然后通過既定的量化指標進行信息篩選、分析和判斷.在信息篩選過程中,相同或相近學(xué)科的期刊編輯若盲目依賴人工智能追求研究熱點、前沿問題,會使各刊研究內(nèi)容重復(fù),最終導(dǎo)致選題方向及選題內(nèi)容同質(zhì)化.這不僅背離了人工智能將編輯從繁瑣的信息搜索工作中解放出來的初衷,造成了人力、物力、財力資源的浪費,還導(dǎo)致科技期刊辦刊特色不鮮明、缺乏學(xué)術(shù)創(chuàng)新.而具有差異化、創(chuàng)新性和前瞻性的科技期刊才能突顯辦刊特色,引領(lǐng)科技創(chuàng)新和行業(yè)發(fā)展.(2)算法的公平性.算法是人工智能的核心,算法越精準,人工智能的自主決策能力越強,其結(jié)果才越具有指導(dǎo)性意義.人工智能選題策劃的每一步?jīng)Q策都是經(jīng)過算法設(shè)定好的,這些算法繁多且邏輯復(fù)雜,但并非完全客觀.現(xiàn)有的機器學(xué)習(xí)模型需要對具體應(yīng)用中產(chǎn)生的海量數(shù)據(jù)進行訓(xùn)練,生成訓(xùn)練模型,然后將訓(xùn)練模型應(yīng)用于后續(xù)的數(shù)據(jù)篩選和預(yù)測.那些最先用于訓(xùn)練的海量數(shù)據(jù)的采集和標記都經(jīng)過算法設(shè)計者、開發(fā)者的挑選和“標簽化”,這就引入了不同程度的“人類偏見”.目前我國人工智能算法很多采用國外的深度學(xué)習(xí)框架,算法中可能已經(jīng)嵌入了設(shè)計者和開發(fā)者的思維和意見,將其應(yīng)用到出版選題策劃中,結(jié)果可能存在偏頗.例如在智能推薦約稿專家的過程中,人工智能受算法設(shè)計者對科研工作者性別、年齡、學(xué)歷、職稱甚至國籍等設(shè)定條件的影響,可能會給出有失公允的推薦結(jié)果.(3)學(xué)習(xí)樣本和訓(xùn)練模型的科學(xué)性.實現(xiàn)人工智能選題策劃首先要訓(xùn)練海量數(shù)據(jù)生成訓(xùn)練模型,這就要求人工智能設(shè)計者必須選取全面、科學(xué)的元數(shù)據(jù),才能最大限度地提高人工智能選題策劃的可靠性.①在學(xué)習(xí)樣本的數(shù)量方面,目前現(xiàn)有的人工智能訓(xùn)練模型大多只基于部分數(shù)據(jù)庫(其中部分數(shù)據(jù)庫需要付費使用),得到的數(shù)據(jù)較為片面;另外,訓(xùn)練數(shù)據(jù)時可能不會針對每一種可能都有足夠的樣本,導(dǎo)致人工智能無法充分學(xué)習(xí),其結(jié)果可靠性將受影響.②在學(xué)習(xí)樣本的科學(xué)性方面,某些科技期刊刊載文章中存在實驗設(shè)計不科學(xué)、不周密或誤用統(tǒng)計方法的現(xiàn)象.例如,文獻[14]對醫(yī)學(xué)論文中樣本選擇的科學(xué)性展開討論,發(fā)現(xiàn)如果采用“選擇”而非隨機抽樣的方式進行實驗分組,將會造成結(jié)果偏性,若將這類文獻作為學(xué)習(xí)樣本進行訓(xùn)練,可能導(dǎo)致錯誤的認知,影響選題策劃過程中人工智能對文獻質(zhì)量和價值的判斷.③在訓(xùn)練模型的科學(xué)性方面,訓(xùn)練模型很難量化訓(xùn)練數(shù)據(jù)中的某些特征,比如文獻的創(chuàng)新程度、重要性及潛在影響力等.
舉個有趣的例子,使用人工智能為美國研究生入學(xué)考試(GraduateRecordExamination,GRE)的答卷評分時,人工智能無法準確評價一篇作文的結(jié)構(gòu)、清晰度、創(chuàng)造力等,而是更關(guān)注作文的長短句、詞匯量、語法等,但后者并不是一篇好作文的最重要衡量指標,只是基本指標.由此可見,利用人工智能量化所有評價指標的難度非常大.另外,訓(xùn)練模型中每一個量化指標的科學(xué)性也有待繼續(xù)探討.在選題策劃過程中,利用人工智能建立訓(xùn)練模型來訓(xùn)練數(shù)據(jù)時,勢必會更注重一些便于量化的評價指標,例如被引頻次、影響因子、h指數(shù)等.單就影響因子而言,它的計算方法與論文學(xué)術(shù)水平并沒有直接關(guān)系[15],如果僅以此作為量化指標生成訓(xùn)練模型,勢必會過濾掉一些對研究者很有價值的文獻,這就需要科學(xué)地設(shè)置各個重要量化指標的權(quán)重.(4)對青年學(xué)者的公正性.青年學(xué)者是科研攻堅的新生力量,他們知識結(jié)構(gòu)更新快、精力充沛,對期刊編輯部的組稿約稿工作響應(yīng)程度高且執(zhí)行力強,產(chǎn)出的論文質(zhì)量較高.但他們的科研工作剛剛起步,相對于資深學(xué)者,學(xué)術(shù)影響力較弱、h指數(shù)相對較低.在利用人工智能進行搜索和構(gòu)建學(xué)者關(guān)系網(wǎng)絡(luò)圖譜時,發(fā)現(xiàn):由于青年學(xué)者的學(xué)術(shù)影響力較弱,他們的名字被用戶搜索到的概率相對較低,研究成果被讀者閱讀、下載、轉(zhuǎn)發(fā)的次數(shù)相對較少;同時,他們在人工智能構(gòu)建的資深專家關(guān)系網(wǎng)絡(luò)圖譜中可能處于邊緣位置,被關(guān)注度較低.上述情況都有可能導(dǎo)致人工智能對青年學(xué)者產(chǎn)出論文在推薦優(yōu)先級別上的誤判.此外,相對于人為選擇約稿專家,利用人工智能篩選、推薦約稿專家時,若算法單純地關(guān)注諸如h指數(shù)等指標,并用于評估青年學(xué)者的學(xué)術(shù)產(chǎn)出數(shù)量與學(xué)術(shù)水平時,會導(dǎo)致青年學(xué)者被人工智能推薦為約稿專家的概率降低,這對青年學(xué)者來說都有失公正.(5)對編輯信息素養(yǎng)的要求.信息素養(yǎng)主要包括信息意識、信息知識、信息技能以及信息倫理道德4個方面.傳統(tǒng)選題策劃注重編輯的信息觀念與意識,而人工智能選題策劃則對編輯的信息素養(yǎng)提出了更全面的要求.雖然人工智能還存在算法設(shè)計缺陷,科學(xué)性還有待提升,目前還不能完全代替編輯獨立完成選題策劃,但是人工智能通過互聯(lián)網(wǎng)大數(shù)據(jù)篩選信息,所得結(jié)果也具有一定的統(tǒng)計學(xué)意義,這就要求編輯對人工智能的工作原理有一定的了解,并對給出的信息有更為敏銳的思辨能力和判斷能力,最終決定是否采用人工智能選題策劃的結(jié)果.大數(shù)據(jù)時代的信息更新非???,編輯還應(yīng)掌握信息處理技能,這些技能包括信息整合、存儲、交換、傳遞、應(yīng)用等.同時,還要特別注意在信息處理過程中所表現(xiàn)出來的道德品質(zhì),比如如何在信息存儲、交換、傳遞過程中保護人工智能篩選出的文獻作者信息、讀者行為信息、約稿專家信息等,避免出現(xiàn)由人工智能帶來的出版?zhèn)惱淼赖聠栴}.
3編輯的應(yīng)對策略
3.1立足自身優(yōu)勢,發(fā)揮主導(dǎo)作用
科技期刊編輯應(yīng)認識到人類的思辨能力、聯(lián)想能力、創(chuàng)新能力以及情感交互能力等是人工智能無法比擬的.在人工智能選題策劃環(huán)節(jié),面對熱點、前沿問題時,編輯首先應(yīng)保持理性思維,堅守意識形態(tài)陣地,結(jié)合自身學(xué)科知識背景和對出版?zhèn)惱淼赖聵藴实陌盐?,發(fā)揮價值判斷優(yōu)勢,辯證分析選題的可行性,引導(dǎo)優(yōu)秀學(xué)術(shù)內(nèi)容的傳播;其次,編輯應(yīng)強化創(chuàng)新意識,打破固定思維的束縛,放寬眼界,拓展知識面,完善知識結(jié)構(gòu),同時依托讀者市場,積極探尋新的選題生長點,推陳出新;最后,人工智能無法就選題計劃與約稿專家進行情感交流,編輯還應(yīng)善于維系與約稿專家之間的情感,給予他們?nèi)宋年P(guān)懷和情感反饋,促進選題策劃過程良性發(fā)展與循環(huán).人工智能是由人類智慧創(chuàng)造出來的,其計算能力和深度歸納分析能力遠超人類.德國波恩大學(xué)教授馬庫斯•加布里爾認為:“人工智能問題的討論需要正本清源,人工智能一直并且只能是人類思維的一種模型,而非思維.”因此在選題策劃過程中,編輯應(yīng)發(fā)揮主導(dǎo)作用,充分利用人工智能的優(yōu)勢為科技期刊選題策劃服務(wù).編輯與人工智能二者互補所長,協(xié)同工作,才能最大化地消除由人工智能選題策劃帶來的負面影響.
3.2全面提升信息素養(yǎng)
人工智能技術(shù)的快速發(fā)展將促使編輯提升其在選題策劃環(huán)節(jié)中的信息素養(yǎng).在互聯(lián)網(wǎng)時代,學(xué)科知識更新迭代速度飛快,且這些知識的媒體也非常多,科技期刊編輯不應(yīng)局限于通過網(wǎng)絡(luò)檢索學(xué)術(shù)動態(tài)、關(guān)注重大專項和成果以及參加重要學(xué)術(shù)會議等常規(guī)形式獲取選題,而是要時刻保持敏銳的洞察力,善于發(fā)現(xiàn)新興事物與所在期刊學(xué)術(shù)知識的內(nèi)在聯(lián)系,尋找選題的靈感.同時,編輯應(yīng)拓寬知識維度,提升自身的學(xué)術(shù)水平、邏輯思維能力和判斷力,還要對人工智能的基本原理和思考過程有一定的了解,才能甄別人工智能選題策劃中存在的疏漏并及時反向查找糾正.另外,編輯要掌握多種信息處理技術(shù),比如多媒體技術(shù)、數(shù)字技術(shù)等,以適應(yīng)未來智慧出版對媒體融合型編輯的要求;還要熟悉人工智能選題策劃全流程,熟練使用人工智能學(xué)術(shù)搜索工具,避免出現(xiàn)人工智能技術(shù)和編輯應(yīng)用能力的不匹配.此外,編輯應(yīng)高度重視在信息處理過程中自身行為可能導(dǎo)致的出版?zhèn)惱淼赖聠栴},同時制定相應(yīng)的應(yīng)急預(yù)案,確保在人工智能選題策劃環(huán)節(jié)中的信息隱私.
3.3積極參與人工智能的優(yōu)化設(shè)計
人工智能算法存在設(shè)計缺陷,可能導(dǎo)致選題策劃結(jié)果與編輯長久以來的思維方式、觀念認知等存在矛盾或偏差.編輯的實際使用感受對人工智能選題策劃發(fā)展進程起著重要作用,因此科技期刊編輯應(yīng)積極參與到算法優(yōu)化設(shè)計中.編輯作為人工智能的使用者,應(yīng)了解人工智能選題策劃用于計算所有指標的數(shù)據(jù)和方法,理解算法設(shè)計者的設(shè)計思路和目的,而不是單純地要求公開算法.算法公開并不能完全消除算法歧視,這是因為算法是由一系列的程序和代碼組成的,具有極強的專業(yè)性和技術(shù)性,且算法是不斷升級優(yōu)化的,最初公開的算法很可能不是當前使用的算法.編輯應(yīng)在實踐中不斷應(yīng)用,發(fā)現(xiàn)并及時反饋算法設(shè)計的不合理性.此外,應(yīng)用人工智能選題策劃的不同出版單位應(yīng)加強交流,互通有無,形成合力,變被動應(yīng)用為主動出擊,共同督促人工智能算法設(shè)計者不斷優(yōu)化升級,最大化地減少算法歧視.
4結(jié)語
人工智能可提高科技期刊選題策劃的效率和準確性,提升約稿對象的匹配度.盡管目前已有一些可輔助選題策劃的人工智能產(chǎn)品問世,但是總體來看,人工智能技術(shù)尚不成熟,用于選題策劃中可能導(dǎo)致選題同質(zhì)化、算法歧視、學(xué)習(xí)樣本不夠科學(xué)等問題,需要編輯在人工智能選題策劃全流程中發(fā)揮主導(dǎo)作用,注重自身信息素養(yǎng)的提升,還要積極參與算法的優(yōu)化升級,讓算法決策更契合編輯的預(yù)期.人工智能技術(shù)與出版融合發(fā)展是行業(yè)的大勢所趨,探討人工智能選題策劃是為了在接受和擁抱技術(shù)性變革之前,從算法設(shè)計者到編輯自身都能做好準備,更好地利用該技術(shù)為科技期刊選題策劃服務(wù).限于人工智能在出版行業(yè)中還未普及,本研究所述的挑戰(zhàn)和編輯應(yīng)對策略只停留在思考層面,未來在實踐中可能還會遇到新的問題,需要編輯積極應(yīng)變.筆者相信,隨著科學(xué)技術(shù)的發(fā)展,人工智能將在科技期刊選題策劃中發(fā)揮重要作用,成為科技期刊編輯強大而可靠的助手.
作者:劉暢 姜京梅 范瑜晛 單位:中國科學(xué)院聲學(xué)研究所《應(yīng)用聲學(xué)》編輯部