公務(wù)員期刊網(wǎng) 精選范文 混沌現(xiàn)象范文

混沌現(xiàn)象精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的混沌現(xiàn)象主題范文,僅供參考,歡迎閱讀并收藏。

混沌現(xiàn)象

第1篇:混沌現(xiàn)象范文

A城-昆明,這是一座西南邊疆的小城,蘇小麥和周京生相遇的城市,一座暖洋洋又曖昧的城市。有時(shí)候不停地漂泊,城市對我們而言是一種相互寄生的關(guān)系,誰在誰體內(nèi)都一樣,誰都不看好誰,但又彼此需要,這是蘇小麥選擇來這座城市的原因。至于周京生,它本身就習(xí)慣了這座生活過許久的城市,回來,那是別處已無任何繼續(xù)幻想的可能;回來,更有歸屬感。

按理來說,周京生應(yīng)該是一個(gè)很長情很戀舊的人,即便喜新,但也不應(yīng)該忘舊。但周京生隱藏了那些舊日情結(jié),或者,感情在周京生看來,本就唾手可得。

周京生,如同生長在這座城市的其他溫帶生物一樣,軟綿綿又倔強(qiáng),沒人能更改。

到底什么是惺惺相惜的溫暖?每一次的溫暖,其實(shí)都是一次降低自己的索求。

不是自己想要的,也不是你能給的。

3: 2

一個(gè)人太容易得到另一個(gè)人了,慢慢地發(fā)現(xiàn)得到的并不是什么好貨色,棄了又可惜,于是就把這根雞肋留著,整天糾結(jié)來,糾結(jié)去,擺著看看或者時(shí)常靠近它嗅嗅,想吃又不知道如何烹制它。

大部分人需要的愛情是什么樣的?

大部分人都不懂得愛情,我們都想締造一次成功的愛情,而成功的愛情的結(jié)局是什么?結(jié)婚,生子,組建家庭,繼續(xù)為生存奔波,我們時(shí)刻都在尋找愛情給我們帶來的那份安逸穩(wěn)定的感覺,與此同時(shí),我們時(shí)?;袒滩话?。愛情來得如此激烈,我們把能用上的情緒都用上了。

以為將許多人囤積起來,這樣即便愛情在最貧瘠的時(shí)候,也不會(huì)將自己餓死。用心去愛一個(gè)人和用手段去愛一個(gè)人是不一樣的,愛情即便可以吃,一些人總是在撐死的邊緣。

我們在愛情里總會(huì)遭遇許多的現(xiàn)象,愛情的混沌現(xiàn)象,便是其中一種。愛情的異端就像蝴蝶的翅膀,隨意扇扇,兩個(gè)人的世界便會(huì)發(fā)生翻天覆地的變化。

3:3

城市很小,相遇卻很曲折,需要雙方走出很長的路。既然蘇小麥已然決定為這個(gè)叫周京生的男人金盆洗手,于是蘇小麥搬去了山頂上的房間,做起了周京生的鄰居兼女友。蘇小麥認(rèn)真地收拾完自己的房間,深藍(lán)色繡著荷花邊的窗簾,紅色的沙發(fā),紫色的床單和被套,這些顏色濃烈得很不和諧。但此時(shí)蘇小麥覺得這樣的張揚(yáng)和熱烈,也恰到好處。

黃昏的時(shí)候,起風(fēng)了,周京生前往外地出差,還未回來,煲完粥,犒勞了自己的胃,心里又暗自地想,這是不是又一次的饑不擇食。

難道愛情里有規(guī)律可循?愛情永遠(yuǎn)都沒有規(guī)律可循,愛情本身就是一種突發(fā)狀況。

蘇小麥的突發(fā)狀況是,單身已久,讓單身見鬼去吧。周京生的突發(fā)狀況是,有總比沒有好。男人在愛情里總是帶著一股壯士的激情的,甚至還有些暴徒的得意,寧可錯(cuò)上百千,也不要放過一個(gè)。女人們,則更懂得見好就收。

3:4

你喜歡對方是什么樣的?安靜,還是瘋狂的?

安靜的愛情靜默地生長,在一個(gè)微風(fēng)徐來的早晨,彼此醒來,相互道好,刷牙,洗臉,吃早餐,然后一起擠上一輛開往城市中心的公交車,到站的時(shí)候,微笑著揮揮手,過著這個(gè)世界上再也平凡不過的瑣碎生活。

一段瘋狂的愛情,總是在必要和不必要的時(shí)候,什么都做了,甚至幻想過無數(shù)次生離死別。我們被我們臆想出來的“浪漫”和“完美主義”害慘了。

3:5

夜里收到一條短信,VV發(fā)來的,“晚安,寶貝”。蘇小麥詫異,笑笑,也許喝醉酒,亂發(fā)的。在蘇小麥的印象里,這個(gè)叫VV的男人,愛畫油畫,愛拍照,從法國留學(xué)回來,自己開了一家電梯公司,又繼承父親的水果行業(yè),沉默寡言,和三條狗生活在杭州。

有一次蘇小麥開玩笑地問候,“你的狗能活多長時(shí)間?”

“能夠活上十幾年吧”

“那可真好,比七年之癢長多了?!?/p>

……

第2篇:混沌現(xiàn)象范文

【 關(guān)鍵詞 】 混沌;圖像加密;Lorenz系統(tǒng)

Using Lorenz Chaos System to Design Color Image Encryption Algorithm

Zou Ben-na

(Party School of CPC Huludao Municipal Committee LiaoningHuludao 125000)

【 Abstract 】 Use the characteristics of chaotic system sensitive depending on the initial conditions of, iterative the three dimensional Lorenz chaotic system to generate three groups of pseudo random sequence, design algorithm to encrypt true color image of red, green and blue components. Use each indicator test results show that this algorithm has large key space, and can get the ideal effect of encryption.

【 Keywords 】 chaos; image encryption; lorenz system

1 引言

真彩色圖像(BMP格式)是由紅綠藍(lán)三個(gè)分量組成的,每個(gè)分量的值在0到255之間。圖像加密與文本加密的不同之處在于,圖像的紅綠藍(lán)像素之間存在很高的關(guān)聯(lián)性。圖像加密分為兩大步驟:像素的擴(kuò)散和混淆。擴(kuò)散是指像素的原始位置打亂,即打破像素間的關(guān)聯(lián),但是他們的值不變,因此直方圖也不變化?;煜抢卯惢虻冗\(yùn)算,改變原像素的值。

混沌系統(tǒng)具有對初值的敏感依賴性,狀態(tài)變量初值的微小變化,能夠得到完全不同的軌道,這一特性被用來加密,是混沌在密碼學(xué)中的探索性應(yīng)用。最初,一維和兩維的混沌系統(tǒng),如Logistic系統(tǒng)、Chebyshev(切比雪夫)映射、PWLCM(分段線性混沌映射)等,被用來加密文本、圖像等信息。這類系統(tǒng)的特點(diǎn)是,只有一到兩個(gè)狀態(tài)變量,加密算法的密鑰空間較小。

三維混沌系統(tǒng),如Lorenz系統(tǒng)、Chen系統(tǒng)等,之前被用來設(shè)計(jì)保密通信系統(tǒng),近幾年,開始被研究者用來做加密圖像。三維混沌系統(tǒng)擁有更多的狀態(tài)變量和參數(shù),因此設(shè)計(jì)的加密算法具有更大的密鑰空間。

筆者擬采用Lorenz系統(tǒng)設(shè)計(jì)彩色圖像算法。Lorenz系統(tǒng)用來生成三個(gè)偽隨機(jī)序列,用來加密三個(gè)顏色分量。特點(diǎn)是加密效果好,密鑰空間大,能夠抵制常見的各種常見的攻擊。

2 Lorenz系統(tǒng)

Lorenz系統(tǒng)是由愛德華?洛倫茨在1950年研究天氣預(yù)報(bào)中的氣流模型時(shí)發(fā)現(xiàn)的。后人在此基礎(chǔ)上又發(fā)現(xiàn)了超混沌Lorenz系統(tǒng)。該系統(tǒng)的動(dòng)力學(xué)方程如下所示:

狀態(tài)變量位于以下區(qū)間:-20≤x≤20,-50≤y≤50,-50≤x≤50。當(dāng)參數(shù)a=10,b=21,c=8/3時(shí),該系統(tǒng)是周期變化的。當(dāng)參數(shù)a=10,b=28,c=8/3時(shí),該系統(tǒng)是混沌的。狀態(tài)變量x-z的空間分布如圖1、圖2所示。

3 算法設(shè)計(jì)

3.1 加密算法

假定明文圖像P的大小為W×H,W和H分別是寬度和高度。加密步驟如下所示:

(1) 利用初值x0、y0和z0,迭代Lorenz系統(tǒng)100次之后,繼續(xù)迭代W×H次,每次迭代得到一組狀態(tài)變量(xi,yi,zi)∈[0,255],根據(jù)公式(2),得到序列X={x1,x2,...,xW×H},Y={y1,y2,...,yW×H},Z={z1,z2,...,zW×H}。

(2)從第一個(gè)像素開始,即i=1,2,...,W×H,將每個(gè)像素pi∈P分解成三個(gè)灰度分量piR、piG和piB,對于每個(gè)明文像素pi∈P,通過公式(3)加密得到密文ciR、ciG和ciB。

符號?茌表示異或操作。最后得到密文彩色圖像C。

3.2 解密算法

密文圖像C的大小也是W×H,W和H分別是寬度和高度。通過相同的密鑰,密文圖像可成功解密。解密算法是加密算法的逆過程,具體步驟如下:

(1)和加密算法相同。

(2)從密文的第一個(gè)像素開始,將每個(gè)像素ci∈C分解成三個(gè)灰度分量ciR、ciG和ciB,對于每個(gè)密文像素ci∈C,通過公式(4)解密得到明文piR、piG和piB。最后得到解密后的彩色圖像P。

4 加密結(jié)果

密鑰值都是隨機(jī)選取的,在下面的實(shí)驗(yàn)結(jié)果中,對于Lorenz系統(tǒng),設(shè)置其初值為x0=0.89234567896716,y0=12.83912567845678,x0=35.10986453445657。原始圖像和加密結(jié)果如圖3所示。

5 性能和安全分析

5.1 密鑰空間和安全性分析

加密算法的安全性之一,取決于密鑰空間是否足夠大到能夠抵抗暴力攻擊。該算法的密鑰是Lorenz系統(tǒng)的初值和參數(shù)(x0,y0,z0)。

通過對Lorenz系統(tǒng)的任意一個(gè)狀態(tài)變量的初值做微小改變,加密結(jié)果將會(huì)完全不同,說明該系統(tǒng)對于初值的微小變化具有高度敏感性。經(jīng)過測試發(fā)現(xiàn),密鑰的誤差在10-14時(shí),解密圖像仍是不可識別的內(nèi)容,但密鑰的誤差在10-15時(shí),圖像可被成功解密。因此,Sx0=Sy0=Sz0=1014 ,總的密鑰空間S=Sx0×Sy0×Sz0=1042 。目前公認(rèn)的只要密鑰空間大于2100,就算是安全的,因此該密鑰空間足以抵制暴力攻擊。

5.2 相關(guān)系數(shù)分析

從明文和密文圖像中按縱向、橫向和對角方向隨機(jī)選擇3000對相鄰像素,利用公式(5),計(jì)算它們的兩個(gè)相鄰像素之間的相關(guān)系數(shù):

其中

圖4顯示了明文和密文圖像中相鄰像素的相關(guān)性,可以看出,在密文圖像中,相鄰像素之間的相關(guān)性很高,而在密文圖像中,相鄰像素之間的相關(guān)性大大降低。

表1是明文及密文圖像的相關(guān)系數(shù)。結(jié)果表明,密文圖像中兩個(gè)相鄰像素間的相關(guān)性是很明顯的,而在密文圖像中相關(guān)性微乎其微,因此該算法的加密效果良好。

5.3 差分攻擊

圖像加密方案的一個(gè)基本要求,就是密文圖像要和明文圖像有顯著差異。這些差異可以通過兩個(gè)標(biāo)準(zhǔn)來衡量,即像素個(gè)數(shù)變化率(NPCR)和整體平均變化強(qiáng)度(UACI)。以下是計(jì)算NPCRR,G,B和UACIR,G,B的公式:

其中W 和H 分別是圖像的寬度和高度,CR,G,B和C'R,G,B分別是明文圖像的某一個(gè)像素改變前后的密文圖像。對于在坐標(biāo)(i,j)處的像素,如果CR,G,B(i,j)≠C'R,G,B(i,j),令DR,G,B(i,j)=1,否則DR,G,B(i,j)=0。

表2顯示的是對Lena和Pepper明文圖像采用不同的密鑰后再加密,然后計(jì)算其密文圖像的NPCR和UACI。其中NPCR的值都超過了99%,UACI的值也都超過了33%。結(jié)果表明該算法對明文圖像的微小變化十分敏感,只要密鑰不同,兩幅相同的圖像的加密結(jié)果完全不同,因此該算法能夠抵御差分攻擊。

6 結(jié)束語

設(shè)計(jì)了一種彩色圖像混沌加密算法,三維Lorenz系統(tǒng)被用來生成偽隨機(jī)序列混淆像素。進(jìn)行了性能和安全性分析,包括密鑰空間計(jì)算、相關(guān)系數(shù)分析及差分攻擊。實(shí)驗(yàn)結(jié)果表明只要采用不同的密鑰,相同的圖像的加密結(jié)果也會(huì)完全不同。密鑰空間足夠大到能夠抵制各種攻擊,因此該算法適合加密彩色圖像。

參考文獻(xiàn)

[1] 李玲,王偉男,李津杰,江進(jìn).基于Logistic映射和超混沌的自適應(yīng)圖像加密算法,微電子學(xué)與計(jì)算機(jī),2012.01.

[2] 朱從旭,孫克輝.對一類超混沌圖像加密算法的密碼分析與改進(jìn),物理學(xué)報(bào),2012.06.

第3篇:混沌現(xiàn)象范文

關(guān)鍵詞:混沌經(jīng)濟(jì)、研究、發(fā)展

混沌經(jīng)濟(jì)學(xué)的興起

混沌經(jīng)濟(jì)學(xué)(chaoticeconomics),也稱為非線性經(jīng)濟(jì)學(xué)(nonlineareconomics),是20世紀(jì)80年代興起的一門新興的學(xué)科,是指應(yīng)用非線性混沌理論解釋現(xiàn)實(shí)經(jīng)濟(jì)現(xiàn)象,在經(jīng)濟(jì)建模中充分考慮經(jīng)濟(jì)活動(dòng)的非線性相互作用,在模型的分析上充分利用非線性動(dòng)力學(xué)的分叉、分形和混沌等理論與方法,分析經(jīng)濟(jì)系統(tǒng)的動(dòng)態(tài)行為,以期產(chǎn)生新的經(jīng)濟(jì)概念、新的經(jīng)濟(jì)思想、新的經(jīng)濟(jì)分析方法,得到新的經(jīng)濟(jì)規(guī)律的一門新興交叉科學(xué)。

傳統(tǒng)經(jīng)濟(jì)學(xué)自亞當(dāng)·斯密1776年《國富論》問世以來,已逐步在西方經(jīng)濟(jì)學(xué)中確立統(tǒng)治地位?!巴耆偁帯笔袌龅淖詣?dòng)調(diào)節(jié)機(jī)制在瓦爾拉一般均衡理論和馬歇爾的“均衡價(jià)格論”體系上取得規(guī)范的形式,并在經(jīng)典科學(xué)的基礎(chǔ)上建立了一整套分析方法。實(shí)際上,傳統(tǒng)經(jīng)濟(jì)學(xué)所構(gòu)建的經(jīng)濟(jì)分析框架,是牛頓力學(xué)的絕對時(shí)空觀(即均衡流逝的絕對時(shí)間和恒等且不動(dòng)的絕對空間)和拉普拉斯決定的可預(yù)測宇宙觀(即一個(gè)單一的公式可以解釋所有的現(xiàn)象并結(jié)束不確定性)在經(jīng)濟(jì)領(lǐng)域的重現(xiàn)。而從現(xiàn)狀經(jīng)濟(jì)角度看,由于種種意外因素的存在和人類所面臨的不確定性。不確定性是現(xiàn)實(shí)經(jīng)濟(jì)運(yùn)行過程中最主要的特征之一。自然地,混沌學(xué)作為一種科學(xué)范式也就成為經(jīng)濟(jì)學(xué)家們研究經(jīng)濟(jì)系統(tǒng)的復(fù)雜性、不確定性和非線性的有力工具,成為社會(huì)、經(jīng)濟(jì)、技術(shù)預(yù)測的有力工具?;煦缃?jīng)濟(jì)學(xué)(或非線性經(jīng)濟(jì)學(xué))已經(jīng)成為當(dāng)代經(jīng)濟(jì)學(xué)研究的前沿領(lǐng)域,并取得迅速的進(jìn)展。

在文獻(xiàn)中正式使用混沌一詞的是李天巖和Yorke,他們在1975年發(fā)表的題為《周期三蘊(yùn)涵混沌》的文章中對最簡單的數(shù)學(xué)模型,即只有一個(gè)變量的模型,證明了一個(gè)重要定理,開啟了近代混沌現(xiàn)象研究的先河。下面我們用f表示只有一個(gè)變量的函數(shù)略加說明。系統(tǒng)(即f)可能是周期的。同是周期現(xiàn)象有一個(gè)周期長短的問題。這個(gè)定理的第一部分說明,如果這樣的系統(tǒng)有一個(gè)3周期點(diǎn),即存在初始值x,使得x,f(x),f2(x)兩兩不等,但x=f3(x)1,它就存在以任意整數(shù)為周期的周期點(diǎn)。周期現(xiàn)象重要,但非周期現(xiàn)象更重要。為此我們引進(jìn)一個(gè)術(shù)語。對任意初始值或點(diǎn)x,x在f的迭代作用下的軌道,是一個(gè)點(diǎn)列。如果這個(gè)點(diǎn)列收斂到一個(gè)固定的點(diǎn),即系統(tǒng)向一個(gè)固定的目標(biāo)運(yùn)行。如果系統(tǒng)不向一個(gè)固定的目標(biāo)運(yùn)行,情況就變得復(fù)雜了。定理的第二部分說明,存在由不可數(shù)無窮多點(diǎn)或初始值組成的I的子集合S,其中任意不同兩點(diǎn)在同步迭代作用下的軌道時(shí)而聚攏,時(shí)而分離。這個(gè)現(xiàn)象說明,如果系統(tǒng)的初始值選在S內(nèi)的點(diǎn)上,那么系統(tǒng)的運(yùn)行就將是復(fù)雜多變的和不可預(yù)測的。也就是出現(xiàn)了混沌現(xiàn)象。1982年6月和1983年5月美國經(jīng)濟(jì)學(xué)家戴(Day)發(fā)表的“非規(guī)則增長周期”、“經(jīng)典增長中顯現(xiàn)的混沌”完成了混沌經(jīng)濟(jì)學(xué)理論上、實(shí)驗(yàn)上的突破,以1987年“黑色星期一”為契機(jī),混沌經(jīng)濟(jì)學(xué)形成了一股不小的研究熱潮,使混沌經(jīng)濟(jì)學(xué)開始步入主流經(jīng)濟(jì)學(xué)的領(lǐng)地。

經(jīng)濟(jì)系統(tǒng)的混沌性

在研究對象和研究方法上,混沌經(jīng)濟(jì)學(xué)與傳統(tǒng)經(jīng)濟(jì)學(xué)都是利用提出假設(shè),利用數(shù)學(xué)工具通過規(guī)范推演和實(shí)證檢驗(yàn)來揭示社會(huì)經(jīng)濟(jì)現(xiàn)象的客觀規(guī)律;但是由于客觀地認(rèn)識到經(jīng)濟(jì)系統(tǒng)的非均衡、非線性、非理性、時(shí)間不可逆、多重解和復(fù)雜性等特點(diǎn),混沌經(jīng)濟(jì)學(xué)在研究和解決問題的具體思維方式和假設(shè)前提上以及確切的方法論上,與傳統(tǒng)經(jīng)濟(jì)學(xué)存在顯著差異。

混沌經(jīng)濟(jì)學(xué)假設(shè)關(guān)系是非線性的,認(rèn)為經(jīng)濟(jì)系統(tǒng)所呈現(xiàn)的短期不規(guī)則漲落并非外部隨機(jī)沖擊的結(jié)果,而是系統(tǒng)內(nèi)部的機(jī)制所引起的。經(jīng)濟(jì)系統(tǒng)中時(shí)間不可逆、多重因果反饋環(huán)及不確定性的存在使經(jīng)濟(jì)系統(tǒng)本身處于一個(gè)不均勻的時(shí)空中,具有極為復(fù)雜的非線性特征。非對稱的供給需求、非對稱的經(jīng)濟(jì)周期波動(dòng)(現(xiàn)已證明:經(jīng)濟(jì)周期波動(dòng)呈“泊松分布”而非“正態(tài)分布”)非對稱的信息、貨幣的對稱破缺(符號經(jīng)濟(jì)與實(shí)物經(jīng)濟(jì)的非一一對應(yīng))、經(jīng)濟(jì)變量迭代過程中的時(shí)滯、人的行為的“有限理性”等正是這種非線性特征的表現(xiàn)。

混沌經(jīng)濟(jì)學(xué)的方法論是集體(整體)主義,即“理論必須根植于不可再分的個(gè)人集團(tuán)的行為”。在混沌經(jīng)濟(jì)學(xué)看來,經(jīng)濟(jì)系統(tǒng)由數(shù)以百萬計(jì)的個(gè)體和組織的相互作用所決定,而每一個(gè)個(gè)體和組織又涉及到數(shù)以千計(jì)的商品和數(shù)以萬計(jì)的生產(chǎn)過程,因此,個(gè)體行為并非是一種孤立的存在,僅僅完備地認(rèn)識個(gè)體的行為并不能使我們掌握整個(gè)經(jīng)濟(jì)系統(tǒng)的演化狀態(tài)。運(yùn)用整體主義的方法論,混沌經(jīng)濟(jì)學(xué)在經(jīng)濟(jì)增長、經(jīng)濟(jì)波動(dòng)、股市漲落、廠商行為、匯率浮動(dòng)等領(lǐng)域進(jìn)行探索,得出了經(jīng)濟(jì)波動(dòng)源于經(jīng)濟(jì)系統(tǒng)的內(nèi)生機(jī)制而非隨機(jī)震蕩、非均衡是經(jīng)濟(jì)系統(tǒng)的常態(tài)、雜亂無章的經(jīng)濟(jì)現(xiàn)象背后隱藏著良好的結(jié)構(gòu)而非隨機(jī)狀態(tài)等一系列在新古典個(gè)人主義方法論下所無法得到的、更符合現(xiàn)實(shí)的結(jié)果。

混沌經(jīng)濟(jì)學(xué)的時(shí)間概念是時(shí)間具有不可逆性。認(rèn)為系統(tǒng)的演化具有累進(jìn)特征(積累效應(yīng)),時(shí)間之矢是永遠(yuǎn)向上的。隨著時(shí)間的演進(jìn),系統(tǒng)總是不斷地具有新的性態(tài),絕不重復(fù),原因與結(jié)果之間的聯(lián)系并非唯一確定的,是一種循環(huán)因果關(guān)系。因此,混沌經(jīng)濟(jì)學(xué)的一個(gè)核心命題是“對初始條件的敏感依賴性”(亦稱“蝴蝶效應(yīng)”)。用通俗的語言來說,混沌系統(tǒng)象一個(gè)放大裝置,可以將初始條件帶進(jìn)的差異迅速放大,最終將真實(shí)狀態(tài)掩蓋,從而實(shí)質(zhì)上導(dǎo)致長期演變軌道的不可預(yù)測性。

混沌經(jīng)濟(jì)學(xué)更注重對遞增報(bào)酬的研究,認(rèn)為經(jīng)濟(jì)系統(tǒng)在一定條件下(指系統(tǒng)結(jié)構(gòu)演化的各種臨界值),小效果的影響力不但不會(huì)衰減,而且還傾向于擴(kuò)大。而這種小效果的擴(kuò)大趨勢也正是由非線性動(dòng)力系統(tǒng)內(nèi)的本質(zhì)特征所決定的?;煦缃?jīng)濟(jì)學(xué)并不排除理性因素,只是認(rèn)為那種完全理性的假設(shè)是不現(xiàn)實(shí)的,只有將理性因素和非理性因素綜合起來考慮才更符合現(xiàn)實(shí)。它認(rèn)為混沌這種表面上看起來是隨機(jī)的現(xiàn)象后面隱藏著一定的規(guī)律性和秩序,如奇異吸引子、分支、窗口等?;煦鐚W(xué)研究的內(nèi)容就是找出其中存在的規(guī)律和秩序,并將事物發(fā)展的必然性和偶然性,幾率描述和決定論描述統(tǒng)一起來,最后再將研究結(jié)果作為工具去解決實(shí)踐中困擾我們的復(fù)雜性難題。

受到眾多自然、富有創(chuàng)建性思想體系綜合啟發(fā)的混沌經(jīng)濟(jì)學(xué),其思想根基比傳統(tǒng)經(jīng)濟(jì)學(xué)觸及更廣的自然科學(xué)領(lǐng)域,因而也就開闊了它的經(jīng)濟(jì)研究視野。

混沌經(jīng)濟(jì)學(xué)的發(fā)展方向

國外的混沌經(jīng)濟(jì)學(xué)已涉及經(jīng)濟(jì)周期、貨幣、財(cái)政、股市、廠商供求、儲(chǔ)蓄、跨代經(jīng)濟(jì)等幾乎所有經(jīng)濟(jì)領(lǐng)域。鮑莫爾(Baumol)和沃爾夫(E.Wolff)等人從微觀經(jīng)濟(jì)角度研究了混沌經(jīng)濟(jì)問題。1983年他們在考慮企業(yè)的研究開發(fā)(R&D)支出水平與企業(yè)生產(chǎn)增長率之間關(guān)系時(shí)發(fā)現(xiàn),在R&D支出水平占企業(yè)銷售收入的比例到達(dá)一定范圍時(shí),企業(yè)的生產(chǎn)增長率就會(huì)呈周期性或混沌態(tài)。1985年,鮑莫爾(Baumol)和夸得特(Quandt)發(fā)表了論文“混沌模型及可預(yù)測性”,研究了利潤與廣告的關(guān)系模型:Pt=ayt(1一Yt)式中Pt為t時(shí)的總利潤,Yt為t時(shí)的廣告支出.他們假定廠商按本期利潤的一個(gè)固定比例b用于下一期的廣告支出,即Yt1=b×Pt,則在a×b=α的條件下,可得到Y(jié)t1=α×Yt(1一Yt);研究表明,這種關(guān)系模型經(jīng)一段時(shí)間后,就會(huì)出現(xiàn)大幅度振蕩,甚至出現(xiàn)混沌。戴(R.Day,1982,1983)研究了包括人口凈自然出生率、生產(chǎn)函數(shù)和平均工資收入的古典經(jīng)濟(jì)增長模型,在最大人口數(shù)量時(shí)的收入若低于維持最低生活水平所需的收入時(shí),人口的變化將會(huì)出現(xiàn)混沌狀態(tài)。他和本哈比(Benhbib,1981)還研究了不同消費(fèi)傾向?qū)?huì)產(chǎn)生不同的消費(fèi)者行為:窮人的消費(fèi)選擇很可能是相當(dāng)穩(wěn)定的,而富人的消費(fèi)行為則可能是周期波動(dòng)的,甚至是混沌的。博爾丁(Boldrin,1988)的研究表明,經(jīng)濟(jì)現(xiàn)象的不規(guī)則波動(dòng)是受到市場力、技術(shù)變革和消費(fèi)傾向三者共同作用下經(jīng)濟(jì)系統(tǒng)內(nèi)生決定的結(jié)果。魯塞(J.B.Rosser,l993)等人以東歐集團(tuán)國家的經(jīng)濟(jì)變革作了實(shí)證說明。中央計(jì)劃的社會(huì)主義經(jīng)濟(jì)既會(huì)出現(xiàn)周期性波動(dòng),也會(huì)出現(xiàn)混沌,而進(jìn)入混沌的條件,往往也是將要發(fā)生經(jīng)濟(jì)制度變革之時(shí)。1992年,底考斯持(D.P.Decoster)和米契爾(D.W.Mitchell)研究了貨幣動(dòng)力系統(tǒng)混沌問題。布勞克(Brock,1988)、沙因克曼(Schenkman)和萊伯倫(LeBaron,1986)等人提出了用關(guān)聯(lián)性、“攪拌”、“殘差”等方法診斷經(jīng)濟(jì)時(shí)間序列的混沌性。索耶斯(Sayers)、巴雷特(Barnett)和費(fèi)蘭克(Frank)等人也都在股票證券、外匯交易、期貨等市場產(chǎn)生高頻經(jīng)濟(jì)數(shù)據(jù)的經(jīng)濟(jì)活動(dòng)中找到了低維混沌吸引子。這意味著只需少數(shù)幾個(gè)經(jīng)濟(jì)變量就可以描述這類復(fù)雜的經(jīng)濟(jì)現(xiàn)象。

第4篇:混沌現(xiàn)象范文

關(guān)鍵詞:混沌;圖像加密;水印嵌入;迭代算法

中圖分類號:TP301文獻(xiàn)標(biāo)識碼:A文章編號:1009-3044(2008)21-30531-02

1 引言

到目前為止,還沒有一個(gè)統(tǒng)一的、有足夠數(shù)學(xué)定理支持的、普遍適用和完美的混沌理論,科學(xué)家們只能通過混沌系統(tǒng)所表現(xiàn)出的一些普遍現(xiàn)象總結(jié)歸納出其所謂的本質(zhì)。哈肯[1]:“混沌性為來源于決定性方程的無規(guī)運(yùn)動(dòng)”;費(fèi)根包姆:“確定系統(tǒng)的內(nèi)在隨機(jī)運(yùn)動(dòng)”;錢學(xué)森:“混沌是宏觀無序、微觀有序的現(xiàn)象”。綜上所述,可以做出如下的理解:混沌是指確定的宏觀的非線性系統(tǒng)在一定條件下所呈現(xiàn)的不確定的或不可預(yù)測的隨機(jī)現(xiàn)象;是確定性與不確定性或規(guī)則性與非規(guī)則性或有序性與無序性融為一體的現(xiàn)象;其不可確定性或無序隨機(jī)性不是來源于外部干擾,而是來源于內(nèi)部的“非線叉耦合作用機(jī)制”。只有經(jīng)過長期演化,結(jié)果才是不確定的,不可預(yù)知的。

混沌是確定論系統(tǒng)的隨機(jī)行為的總稱[2],它的根源在于非線性的相互作用?;煦绮皇腔靵y,它不同于平衡態(tài),是一種序,是貌似無序的序。自然界中最常見的運(yùn)動(dòng)形態(tài),往往既不是完全確定的,也不是完全隨機(jī)的,而是介于兩者之間,這就是研究確定論系統(tǒng)中隨機(jī)行為的重要意義所在。

2 混沌序列產(chǎn)生

在傳統(tǒng)的迭代乘積密碼系統(tǒng)[3]中,排列算法的主要任務(wù)就是對明文數(shù)據(jù)塊中的元素進(jìn)行重排(也稱為“置亂”),使得密文塊看起來是隨機(jī)的。不過,這些排列算法通常是事先確定好的,而與密鑰無關(guān)。這是一個(gè)明顯的缺陷,使得某些迭代乘積密碼系統(tǒng)特別容易受到差分密碼分析的攻擊,而基于密鑰排列的安全性能會(huì)有較大改善。在基于密鑰的排列算法中,以密鑰作為排列的參數(shù),參數(shù)能夠唯一地確定排列的性質(zhì)。

基于密鑰的排列可以在頻域或空間域進(jìn)行。排列變換[4]可以是局部的,或是全局的??臻g域的排列加密算法實(shí)現(xiàn)較為簡單,因?yàn)椴恍枰褂靡话泐l域算法所必須的空域到頻域的變換。算法是先生成實(shí)數(shù)值混沌序列,然后把實(shí)數(shù)值混沌序列轉(zhuǎn)化為二進(jìn)制序列,而利用該序列作為判斷條件間接加密圖像。利用混沌序列生成方式形成新的混沌映射,生成新的整數(shù)混沌序列。該序列仍然具有混沌特性,然后用生成的混沌序列直接加密圖像,易實(shí)現(xiàn)、計(jì)算花費(fèi)少,加密后圖像可以完全正確的還原成原始圖像。

2.1 混沌映射

利用函數(shù)映射,提出一個(gè)具有良好隨機(jī)統(tǒng)計(jì)特性的一維非線性映射,由它生成的混沌序列為某一區(qū)域上的整數(shù)值混沌序列,具有隨機(jī)性,并且對初值極其敏感。可定義如下:

xk+1=fa(xk)

混沌映射式(1)經(jīng)過n次迭代后形成新混沌映射式(2),同樣具有上述混沌映射式(1)的混沌特性:

當(dāng)給定初始值x0,參數(shù)a、m的值和迭代次數(shù)n的值就確定了,生成混沌序列為:{xk;k=0,1,2,3,L}。

該序列具有混沌特性,對初值條件X0極為敏感。a與n也作為初始條件,即把有序數(shù)組(x0,a,n)一起作為密鑰,則攻擊混沌系統(tǒng)式(2)成功的概率比只把x0作為密鑰時(shí)攻擊成功的概率更小。

下面的例子是混沌映射式(2)生成混沌序列的具體過程。

例如:要產(chǎn)生[1,371]之間的一個(gè)整數(shù)混沌序列,取參數(shù)m=371,a=205,表1為混沌序列產(chǎn)生過程。表的第一行為迭代次數(shù)n,第一列為xk,表中為對應(yīng)某一xk,n的xk+1。

1) 加密算法設(shè)計(jì)

step 1 輸入M,N,原始圖像IR=(i,j,g(i,j))。

step 2 輸入一維混沌映射式(2)的初始值x0,設(shè)置參數(shù)a,m的值和迭代次數(shù)n的值,用混沌映射(2)生成混沌序列:

x0,x1,x2,L,xm+n-1

step 3

for i=0 to m-1

Xi=xi mod n

for j=0 to n-1

if j+xi≥n

(i,j,g(i,j))(i,j+xi,g(i,j))

end

end

利用第二步生成的混沌序列將圖像的每行像素右移(循環(huán)移動(dòng))變換到該行的另一位置,像素的灰度值不變。

step 4

for j-0 ton-1

Yj=xM+j mod m

if i+Yj≥m

(i,j,g(i,j)) (i+Yj-M,j,g(i,j))

else (i,j,g(i,j)) (i+Yj,j,g(i,j))

end

end

這一步利用第2步生成的混沌序列將圖像的每列像素下移(循環(huán)移動(dòng))變換到該列的另一位置,像素的灰度值不變。

step 5 得到加密圖像的各個(gè)像素的新的灰度值g'(i,j),生成加密圖像IE=(i,j,g'(i,j))。

step 6 終止算法。

2) 解密算法設(shè)計(jì)

step 1 輸入 M,N以及加密圖像IE。

step 2 這一步與加密過程第二步正好一樣,輸入一維混沌映射式的初始值x0,設(shè)置參數(shù)a、m的值和迭代次數(shù)n的值,用混沌映射式生成混沌序列:x0,x1,x2,L,xm+n-1。

step 3

For j = 0 to N-1

Yj = xM+j mod M

For i =0 to M-1

if iCYj ≤ M

(i,j,g(i,j))(i-Yj+M,j,g(i,j))

else (i,j,g(i,j))(I-Yj,j,g(i,j))

end

end

這一步是加密過程的第4步的逆過程,利用第2步生成的混沌序列將圖像的每列像素上移(循環(huán)移動(dòng))變換到該列的另一位置,像素的灰度值不變。

step 4

For i = 0 to M-1

Xj = xM+j mod N

For j =0 to N-1

If jCXi ≤ N

(i,j,g(i,j))(i,j-Xi+N,g(i,j))

else (i,j,g(i,j)) (i,j-Xi,g(i,j))

end

end

這一步是加密過程的第三步的逆過程,利用第二步生成的混沌序列將圖像的每行像素左移(循環(huán)移動(dòng))變換到該行的另一位置,像素的灰度值不變。

step 5 得到解密圖像的各個(gè)像素的新的灰度值g''(i,j)=g(i,j),生成解密加密圖像ID = (i,j,g''(i,j))=IR還原圖像。

Step 6 終止算法。

3) 加密、解密結(jié)構(gòu)圖,如圖1。

其中,對于加密解密過程的混沌系統(tǒng)是完全一樣的?;煦缦到y(tǒng)式的初始值x0,參數(shù)a,m的值和迭代次數(shù)n的值對于加密解密處理過程完全一樣,從而保證加密前的圖像和解密后的圖像完全一致,即完全還原。

3 算法分析

1) 破解變得復(fù)雜

初始值x0的選取有m個(gè)不同的值。如圖像為256色,則m=256。參數(shù)a的選取也有m個(gè)不同的值。那么破解復(fù)雜度是單初始值、單參數(shù)混沌系統(tǒng)的m2倍。如果把混沌映射式迭代次系統(tǒng)式復(fù)雜度,數(shù)n也作為密鑰,則破解系統(tǒng)的復(fù)雜度變得更高,這里可以適當(dāng)選取迭代次數(shù)n的值。把數(shù)組(x0,a,n)一起作為密鑰,就是為了加大破解難度。

2) 提高了算法的隨機(jī)性,增強(qiáng)了魯棒性

對于圖像的每個(gè)像素,由混沌系統(tǒng)式(2)生成的混沌序列隨機(jī)特性,通過變換可能在圖像的任何位置,加密結(jié)果可能有(M*N)!。結(jié)果,如果采用窮舉法攻擊需要計(jì)算(M*N)! 次,其破解成功的概率幾乎為0。例如:一張?jiān)紙D像, IR大小為M*N個(gè)像素,M =256,N = 256,采用窮舉法攻擊需要計(jì)算(256*256)! 次,這幾乎不可能攻擊成功。

4 結(jié)論

本文采用嵌入圖像先生成實(shí)數(shù)值混沌序列,然后把實(shí)數(shù)值混沌序列轉(zhuǎn)化為二進(jìn)制序列,而利用該序列作為判斷條件間接加密圖像。加密水印的嵌入是按各個(gè)小波子塊行掃描的順序進(jìn)行的,這加強(qiáng)了水印系統(tǒng)被破解的難度,也加強(qiáng)了水印的安全性和魯棒性。

參考文獻(xiàn):

[1] I J Cox, J Kilian, T Leighton, et al.Secure spread spectrum watermarking for mulitimedia[R].NEC Research Institute Technical Report.1995.

[2] Miller M L, Cox I J, dBloom J A. Informed embedding: Exploiting image and detector information during watermark insertion[C].IEEE International Conference on Image Processing, 2000.

[3] 黃繼武,姚若河.基于塊分類的自適應(yīng)圖象水印算法[J].中國圖象圖形學(xué)報(bào),1999(4).

第5篇:混沌現(xiàn)象范文

【關(guān)鍵詞】碼分多址 通信系統(tǒng) 混沌理論 應(yīng)用 探討

隨之經(jīng)濟(jì)日益發(fā)展,人們的生活水平已有了質(zhì)的提高,對通信領(lǐng)域提出了新的更高要求。同時(shí),在科技發(fā)展的浪潮中,各種新的技術(shù)應(yīng)運(yùn)而生,逐漸應(yīng)用到通信領(lǐng)域中。在新時(shí)代下,就碼分多址技術(shù)而言,它已經(jīng)過了漫長的發(fā)展歷程,在通信領(lǐng)域中的地位日益凸顯。同時(shí),在非線性科學(xué)研究中,混沌理論、混沌現(xiàn)象都是其核心的組成要素,是新時(shí)期具有廣闊應(yīng)用前景的理論之一。隨著碼分多址通信系統(tǒng)的不斷完善,混沌理論已被應(yīng)用到其中,為其長遠(yuǎn)的發(fā)展道路提供了有利的保障??梢姡驹诳陀^的角度,對混沌理論在其中的應(yīng)用予以分析具有一定的實(shí)踐意義。

1 混沌理論概述

從某種意義上說,混沌并沒有嚴(yán)格的定義。通常情況下,它是指和隨機(jī)性外因無關(guān),卻和某種內(nèi)因有著必然聯(lián)系,并由此得出的具有隨機(jī)性特點(diǎn)的一種運(yùn)動(dòng)狀態(tài)。而混沌運(yùn)動(dòng)則是指在對應(yīng)的確定性系統(tǒng)中,那些局限于有限相空間的具有其不穩(wěn)定特征的運(yùn)動(dòng)。由于這種不穩(wěn)定性的存在,相關(guān)系統(tǒng)的長時(shí)間行為會(huì)呈現(xiàn)出一種混亂現(xiàn)象。就混沌理論而言,它和一系列的混沌現(xiàn)象都屬于非線性科學(xué)研究領(lǐng)域的核心組成部分。同時(shí),它也充分展現(xiàn)了動(dòng)力學(xué)系統(tǒng)理論的特點(diǎn),屬于混沌學(xué)的新分支。為此,混沌理論被人們稱之為是在相對論、量子力學(xué)之后的一次歷史性的科學(xué)革命,具有劃時(shí)代的意義。在新時(shí)代下,由于混沌中具有的秩序性,隨機(jī)中展現(xiàn)的規(guī)律性等特點(diǎn),混沌理論及其混沌現(xiàn)象已成為新時(shí)期科學(xué)界探討的火熱話題,混沌理論已逐漸完善,具有更好的發(fā)展前景。

2 碼分多址通信系統(tǒng)概述

從某個(gè)側(cè)面而言,碼分多址這一概念來源于擴(kuò)頻通信,CDMA是它的英文簡稱。就擴(kuò)頻通信而言,它已有大約三十年的歷史。最早的時(shí)候,擴(kuò)頻通信主要用于軍事方面,是重要的通信樞紐,在敵對環(huán)境中,可以充分利用擴(kuò)頻技術(shù),來抵抗敵軍對通信系統(tǒng)造成的干擾,提供具有保密性質(zhì)的通信。隨之?dāng)U頻技術(shù)的逐漸完善,它也被應(yīng)用到民用通信方面。同時(shí),集成電路技術(shù)的發(fā)展為碼分多址技術(shù)的進(jìn)一步研究提供了有利的條件。隨著研究的不斷深入,碼分多址技術(shù)逐漸被應(yīng)用到數(shù)字蜂房類型的移動(dòng)通信等領(lǐng)域,扮演著關(guān)鍵性的角色,已成為新時(shí)代科學(xué)界關(guān)注的焦點(diǎn)。以陸地蜂房移動(dòng)通信系統(tǒng)為例,碼分多址技術(shù)的應(yīng)用主要是為了緩和無限用戶、有限頻帶二者間的矛盾,更好地滿足用戶多樣化的需求。此外,碼分多址技術(shù)具有多樣化的特點(diǎn),比如,具有較強(qiáng)的抗干擾性、具有一定的軟切換能力,為經(jīng)濟(jì)而高效的個(gè)人通信提供了有利的支撐力量。就其基本思想而言,碼分多址是在通信系統(tǒng)發(fā)送端調(diào)制器的基礎(chǔ)上,引入的具有噪聲類型的偽隨機(jī)碼。換句話說,它是原信息信號的轉(zhuǎn)換,使對應(yīng)的信號頻譜以迅速擴(kuò)展。通常情況下,一旦每個(gè)通信點(diǎn)都采用不同類型的PN碼進(jìn)行區(qū)分,便會(huì)形成對應(yīng)的碼分多址系統(tǒng),也被叫做擴(kuò)頻多址。

3 碼分多址通信系統(tǒng)中混沌理論的應(yīng)用

隨著時(shí)代不斷演變,混沌理論已逐漸完善,逐漸被應(yīng)用到碼分多址通信系統(tǒng)中。主要是因?yàn)榛煦缧盘柧哂幸欢ǖ奶厥庑再|(zhì),可以使相關(guān)混沌系統(tǒng)產(chǎn)生一定的混沌序列。而這些序列在現(xiàn)代化通信領(lǐng)域中發(fā)揮著不容忽視的作用,尤其是在具有保密功能的擴(kuò)頻通信方面。因此,本文作者對混沌理論在碼分多址通信系統(tǒng)方面的應(yīng)用予以了分析。

就其應(yīng)用而言,以混沌信號在保密通信方面的應(yīng)用為例,根據(jù)混沌信號的作用不同,可以對它進(jìn)行不同的分類。比如,振幅隱蔽類型的通信。對于這方面,主要是以混沌信號為載波,可以將那些等待調(diào)制的信息以疊加的方式在上面發(fā)送。而在信息數(shù)據(jù)接收端,會(huì)把接收到的信號減去其中那些和調(diào)制信號一致的混沌信號。在此基礎(chǔ)上,便可以迅速調(diào)解出好那些有用的信息數(shù)據(jù),使混沌好隱蔽調(diào)制通信得以實(shí)現(xiàn)。需要注意的是:在混沌理論應(yīng)用過程中,被調(diào)制出的信息數(shù)據(jù)幅度不能超過混沌信號本身的幅度。比如,混沌參數(shù)調(diào)制通信,也被叫做混沌交換。以混沌參數(shù)領(lǐng)域?yàn)槊浇?,對?yīng)的元件參數(shù)必須在該范圍內(nèi)。以此為基礎(chǔ),對混沌系統(tǒng)所具有的元件參數(shù)值進(jìn)行合理化地調(diào)制,并使那些收、發(fā)系統(tǒng)實(shí)現(xiàn)同步、異步狀態(tài)。更為重要的是,混沌系統(tǒng)自身的行為需要以兩個(gè)吸引子為紐帶,實(shí)現(xiàn)彼此間的交換。最終,使保密通信得以實(shí)現(xiàn)。在碼分多址通信系統(tǒng)中,混沌信號在擴(kuò)頻通信方面的應(yīng)用具有一定的優(yōu)勢。

(1)在混沌信號應(yīng)用過程中,會(huì)出現(xiàn)很多可用碼組。以傳統(tǒng)型的偽隨機(jī)碼序列為例,其中的碼組數(shù)目并不是無限的,會(huì)受到相關(guān)方面的限制,而其中的優(yōu)選碼組特別少。但混沌信號的應(yīng)用可以為此提供無限的碼組,還有很多優(yōu)質(zhì)組,具有一定的自/互相關(guān)特性。

(2)具有很好的保密性,可以有效防止重要信息數(shù)據(jù)的泄漏。在傳輸過程,混沌信號會(huì)使所傳出的信號頻譜像高斯白類型的噪聲。在傳輸過程中,很難引起注意。同時(shí),在混沌信號應(yīng)用中,混沌序列已不僅僅是一種二元序列,可以使重要信息數(shù)據(jù)被破譯的可能性降到最低。而其中的混沌調(diào)制編碼序列也不會(huì)和信息位相對應(yīng),即使其中某一信息數(shù)據(jù)被破譯,也不會(huì)使傳輸中的信息被泄漏。

4 結(jié)語

總而言之,在碼分多址通信系統(tǒng)中,混沌理論的應(yīng)用有著非常深遠(yuǎn)的意義。它能夠使碼分多址類型的通信系統(tǒng)所具有的功能得以更好地呈現(xiàn),對數(shù)據(jù)信息的傳送具有更好的保密性,為我國相關(guān)工作的開展提供便利。同時(shí),混沌理論的應(yīng)用能夠使碼分多址通信系統(tǒng)更加完善,不斷擴(kuò)大其應(yīng)用范圍。從長遠(yuǎn)的角度來說,碼分多址通信系統(tǒng)還需要進(jìn)一步完善,但其必將會(huì)走上長遠(yuǎn)的發(fā)展道路,使我國通信事業(yè)擁有更加廣闊的發(fā)展空間,步入更高的發(fā)展階段。

參考文獻(xiàn)

[1],張娥.碼分多址通信系統(tǒng)仿真設(shè)計(jì)與性能分析[J].才智,2011,(16):55.

[2]陳震.基于碼分多址的CDMA系統(tǒng)仿真[J].城市建設(shè)理論研究(電子版),2012,(13).

[3]韓曉娟.基于混沌序列的擴(kuò)頻通信系統(tǒng)的研究[D].西安科技大學(xué),2013.

[4]唐娜.基于WPDM-CDMA的多載波通信系統(tǒng)性能研究[D].重慶理工大學(xué),2013.

第6篇:混沌現(xiàn)象范文

關(guān)鍵詞:永磁同步電動(dòng)機(jī);非線性反饋控制器;混沌控制

中圖分類號:F407.471 文獻(xiàn)標(biāo)識碼:A 文章編號:

汽車工業(yè)在近百年的發(fā)展中,給人類社會(huì)的文明和經(jīng)濟(jì)的發(fā)展帶來了革命性的進(jìn)步。但當(dāng)前汽車工業(yè)發(fā)展面臨很多的制約因素,如能源危機(jī)、環(huán)保危機(jī)、安全危機(jī)等,汽車的變革之路勢在必行。隨著具有高效節(jié)能、低排放或零排放優(yōu)勢電動(dòng)汽車的出現(xiàn),汽車工業(yè)重獲生機(jī),電動(dòng)汽車成為國際節(jié)能環(huán)保汽車發(fā)展的主攻方向,世界上許多國家都開始投入大量資金研發(fā)電動(dòng)汽車。在電動(dòng)汽車各類驅(qū)動(dòng)電機(jī)中,永磁同步電機(jī)以體積小、能量密度高、響應(yīng)快和慣性低等優(yōu)點(diǎn)逐漸成為電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)的主流電機(jī)之一。永磁同步電動(dòng)機(jī)是一種強(qiáng)非線性系統(tǒng),能呈現(xiàn)出非常豐富的動(dòng)態(tài)特征。當(dāng)電機(jī)參數(shù)處于某些區(qū)域時(shí),電機(jī)將產(chǎn)生混沌運(yùn)動(dòng),表現(xiàn)為轉(zhuǎn)矩忽大忽小,轉(zhuǎn)速忽高忽低,電機(jī)的這種混沌運(yùn)動(dòng)狀態(tài)將直接影響電機(jī)的正常運(yùn)行質(zhì)量和穩(wěn)定性。因此,如何控制和避免這種混沌現(xiàn)象成為業(yè)內(nèi)技術(shù)人員關(guān)注和研究的重要課題。

目前,已有一些方法被用于電機(jī)的混沌控制,并取得了良好效果,但其中的一些方法還不完善,有待進(jìn)一步的改進(jìn)。如參考文獻(xiàn)[3]提出了納入軌道和強(qiáng)迫遷徙控制永磁同步電動(dòng)機(jī)中的混沌現(xiàn)象,該方法是在電機(jī)動(dòng)態(tài)方程的速度微分方程中施加一個(gè)外部輸入,同時(shí)要求系統(tǒng)軌道處于吸引域中時(shí)才能進(jìn)行控制。此外,由于該方法實(shí)質(zhì)上是一種開環(huán)控制,理論上不能保證控制系統(tǒng)是穩(wěn)定的, 因而在實(shí)際中難以實(shí)現(xiàn)。文獻(xiàn)[4]采用延遲反饋方法控制永磁同步電動(dòng)機(jī)中的混沌現(xiàn)象,用延時(shí)處理永磁同步電動(dòng)機(jī)中的混沌運(yùn)動(dòng),缺點(diǎn)是難以確定延時(shí)時(shí)間,不能將混沌系統(tǒng)設(shè)定到預(yù)知的軌道。文獻(xiàn)[5]采用自適應(yīng)混沌同步控制算法,雖然具有較好的魯棒性,但快速性卻不夠理想。

為了改進(jìn)上述文獻(xiàn)中的不足,并能快速有效的消除永磁同步電機(jī)的混沌現(xiàn)象,本文從PMSM的d、q旋轉(zhuǎn)坐標(biāo)系下的數(shù)學(xué)模型出發(fā),在此基礎(chǔ)上采用Lyapunov穩(wěn)定性方法,分析了PMSM的混沌動(dòng)態(tài)行為。最后設(shè)計(jì)了一種非線性控制器,實(shí)現(xiàn)了PMSM混沌系統(tǒng)對參考給定輸入的快速跟蹤控制,并給出了仿真結(jié)果。

一、永磁同步電機(jī)系統(tǒng)的數(shù)學(xué)模型

以定子d與q軸,電流、和轉(zhuǎn)子角速度為狀態(tài)變量,利用d-q坐標(biāo)軸,永磁同步電機(jī)的數(shù)學(xué)模型為:

=(---)/

=(-+)/(1)

=[+(-)--]/

上述模型經(jīng)過仿射變換和時(shí)間尺度變換,得到永磁同步電機(jī)的無量綱狀態(tài)方程:

=-++

=--++ (2)

=(-)+-

式中,=;=;=;=;=;=;=1;、、為無量綱狀態(tài)變量,分別表示與軸定子電流、和轉(zhuǎn)子角速度;參數(shù)、和分別為和軸電壓和外部扭矩;、分別為和軸定子電感;為永久磁通;為定子繞組;為粘性阻尼系數(shù);為轉(zhuǎn)動(dòng)慣性;為極對數(shù)。、、、、、皆取正數(shù)。當(dāng)=時(shí),系統(tǒng)為均勻氣隙永磁同步電動(dòng)機(jī),否則為非均勻氣隙永磁同步電動(dòng)機(jī)。系統(tǒng)參數(shù)中,受工作環(huán)境、外部條件影響最大;系統(tǒng)隨值變化而呈現(xiàn)出非常復(fù)雜的非線性動(dòng)力學(xué)行為。

二、永磁同步電機(jī)混沌分析

選取系統(tǒng)參數(shù)如下:=15mH,=10mH,= -0.27,=-0.42,=1.2,=5,=8,= 0.98。初始條件為:(0)=0.05,(0)=0.02,(0)=0.05。取時(shí)間步長為0.005s,用四階定步長Runge—Kutta法對式(1)進(jìn)行數(shù)值積分,可得到系統(tǒng)的時(shí)間歷程圖、相軌跡圖、Lyapunov指數(shù)圖和功率譜圖,如圖1-4所示。

圖1系統(tǒng)的時(shí)間歷程曲線圖圖2 系統(tǒng)的相軌跡圖

圖3 系統(tǒng)的Lyapunov指數(shù)圖 圖4 系統(tǒng)的功率譜圖

從圖1上看,狀態(tài)變量隨時(shí)間變化而雜亂無章的變化;從相軌跡圖2上看,曲線是不封閉的;從圖3上看,Poincare映射既不是有限點(diǎn)集也不是封閉曲線,是混沌吸引子;從圖4可知,系統(tǒng)穩(wěn)定后Lyapunov指數(shù)>0、>0、

三、非線性控制器對混沌控制的研究及效果分析

當(dāng)電機(jī)系統(tǒng)在運(yùn)行時(shí),參數(shù)的變化容易誘發(fā)系統(tǒng)進(jìn)入混沌狀態(tài),設(shè)計(jì)本控制器的目的就是讓電機(jī)從混沌狀態(tài)中快速恢復(fù)過來,并穩(wěn)定在期望數(shù)值上??紤]定義的維非線性混沌系統(tǒng):

= = (3)

式中:F為非線性光滑向量函數(shù);X為系統(tǒng)的狀態(tài)變量,X=[,,…,]T;為系統(tǒng)輸出,D為1×的常數(shù)矩陣。設(shè)系統(tǒng)的非線性反饋控制器為:U=K(-)。式中K為反饋增益矩陣。將該非線性反饋控制器負(fù)反饋加到系統(tǒng)中,則受控系統(tǒng)為:

=-U (4)

如果設(shè)K=[0,0,(-)],為控制調(diào)節(jié)系數(shù),則系統(tǒng)控制方程為:

=-++

=--++(5)

=(-)--(-)

式中,控制變量為(-),控制器中的狀態(tài)變量和,即定子d與q軸和,可通過測量和計(jì)算得到,這種方法在物理上是簡單可行的。隨著控制系數(shù)k值的增大,系統(tǒng)先為混沌運(yùn)動(dòng),當(dāng)k>3.9時(shí),系統(tǒng)被控制到穩(wěn)定的運(yùn)動(dòng)狀態(tài)。當(dāng)永磁同步電動(dòng)機(jī)中出現(xiàn)混沌振動(dòng)時(shí),即可利用上述方法加以控制,使系統(tǒng)迅速呈現(xiàn)穩(wěn)定的運(yùn)動(dòng)。實(shí)施時(shí)只要采集定子d與q軸電流,以系數(shù)k作為反饋調(diào)節(jié)系數(shù),選取適當(dāng)?shù)臄?shù)值即可實(shí)現(xiàn)控制。取k=7時(shí),系統(tǒng)受控制后的時(shí)間歷程曲線、相軌跡圖,如圖5~6所示。從圖5上看狀態(tài)變量經(jīng)歷短暫的振蕩后迅速穩(wěn)定;從相軌跡圖6上看狀態(tài)變量穩(wěn)定在不動(dòng)點(diǎn)。

圖5K=7時(shí),系統(tǒng)的時(shí)間里程圖圖6K=7時(shí),系統(tǒng)的相軌跡圖

結(jié)束語

本文對非均勻氣隙PMSM一般情形下的混沌運(yùn)動(dòng)進(jìn)行非線性狀態(tài)反饋控制。此方法具有設(shè)計(jì)簡單,控制代價(jià)小,易于實(shí)現(xiàn)等優(yōu)點(diǎn)。此外,反饋增益由極點(diǎn)配置方法獲得,使系統(tǒng)的動(dòng)態(tài)響應(yīng)特性完全符合期望的綜合指標(biāo)要求。數(shù)值仿真得到的結(jié)果與理論分析相一致。研究結(jié)果對保證電機(jī)傳動(dòng)系統(tǒng)的穩(wěn)定運(yùn)行具有較好的參考價(jià)值。該方法有效地克服了一般控制方法下的動(dòng)態(tài)性能差和穩(wěn)定區(qū)域小的缺點(diǎn),為快速有效抑制和消除電力傳動(dòng)系統(tǒng)中的混沌現(xiàn)象,保證系統(tǒng)的穩(wěn)定運(yùn)行提供了參考。

參考文獻(xiàn)

[1]ZHUJUN J,CHANG Y,CHEN G R.Complex dynamics in permanent-magnet synchronous motors model[J].Chaos,Solitons and Fractals,2004,22(2):831-848.

[2]PAR JH,KWONOM.A novel criterion for delayed feedback control of time-delay chaotic systems[J].Chaos,Solifions and Fractals,2005,23(2):495-501.

[3]李忠,張波,毛宗源.永磁同步電機(jī)系統(tǒng)的納入軌道和強(qiáng)迫遷徙控制[J].控制理論與應(yīng)用,2002,19(1):53-56.

第7篇:混沌現(xiàn)象范文

關(guān)鍵詞:公共危機(jī)管理;危機(jī)模式;契合性;混沌理論

一、“混沌理論”與“公共危機(jī)”

1.混沌理論的概念提出

“混沌理論”的產(chǎn)生,最早可追溯到二十世紀(jì)七十年代左右,提出者是一名著名的氣象學(xué)家——愛德華·洛倫茲。該理論一問世便得到了可與相對論、量子力學(xué)相媲美的待遇,并稱“三大科學(xué)革命”。現(xiàn)今,隨著該理論的發(fā)展,其影響力已波及幾乎社科的各方各面。

顧名思義,混沌理論中的中心詞匯“混沌”,本意是指混亂而沒有秩序的狀態(tài),在哲學(xué)中,混沌指虛空,或者沒有結(jié)構(gòu)的均勻狀態(tài)。而在愛德華·洛倫茲理解中,這個(gè)詞匯被賦予了另一種全新的意義:即指它們看似是隨機(jī)發(fā)生的而實(shí)際上其行為卻由精確的法則決定。而當(dāng)今很多學(xué)者們又認(rèn)為,混沌產(chǎn)生于確定性的非線性系統(tǒng),貌似隨機(jī)卻又暗含規(guī)律,是無序中的有序。

綜上所述,該理論也可以成為非平衡理論研究的重點(diǎn),是事物或系統(tǒng)中有序和無序相互轉(zhuǎn)變的理論,表現(xiàn)為由無序狀態(tài)轉(zhuǎn)變?yōu)橛行驙顟B(tài)?;煦缋碚摽傮w可以歸結(jié)為以下幾點(diǎn):混沌系統(tǒng)的運(yùn)行并非無跡可尋,重點(diǎn)在于其初始條件的設(shè)定,也就是說,其對初始條件有著相當(dāng)?shù)拿舾?、依賴性;初始再為簡單的系統(tǒng),經(jīng)過一系列演變之后也會(huì)復(fù)雜無比,反之,復(fù)雜的背后可能是一個(gè)簡單無比的系統(tǒng);混沌狀態(tài)的系統(tǒng)在一定條件下可以漸進(jìn)的轉(zhuǎn)化。

以上幾點(diǎn),就是混沌理論研究的核心。

2.混沌理論的主要特征

(1)無序性和有序性的辯證統(tǒng)一?;煦缋碚摵暧^上具有無序性,這主要體現(xiàn)在混沌現(xiàn)象具有內(nèi)在隨機(jī)性和局部不穩(wěn)定性?;煦绗F(xiàn)象敏感地依賴其初始狀態(tài),這種對初始狀態(tài)極度的敏感則表現(xiàn)為某種程度的不可預(yù)測性和不穩(wěn)定性。同時(shí),混沌理論還具有微觀上的有序性則體現(xiàn)在它的普適性上。

(2)穩(wěn)定性和不穩(wěn)定性的辯證統(tǒng)一。混沌,本身就是一個(gè)介乎于穩(wěn)定或不穩(wěn)定之間。該系統(tǒng)在全局上非常穩(wěn)定,但在局部卻混亂非常,這也是區(qū)別于有序系統(tǒng)的最大特征。局部的不穩(wěn)定,就決定了整個(gè)系統(tǒng)對初始條件極為敏感,這也就是在混沌理論中最為有名的一個(gè)名詞:“蝴蝶效應(yīng)”。初始條件極其細(xì)微的改變就會(huì)引起系統(tǒng)運(yùn)行結(jié)果的千差萬別。

(3)隨機(jī)性與確定性的辯證統(tǒng)一。無序中尋找有序,復(fù)雜中總結(jié)簡單,這就是混沌理論的方法論。兩者之間是對立而統(tǒng)一的。而在我們的實(shí)際生活中,很多現(xiàn)象表明,瞬息萬變的環(huán)境中的不確定因素、事件本質(zhì)和發(fā)生也存在一些必然的確定性因素。

3.公共危機(jī)管理模式中的混沌理論

⑴混沌理論的非線性體現(xiàn)在公共危機(jī)管理模式的開放性中。在混沌理論中,無論是什么系統(tǒng),都會(huì)經(jīng)歷一個(gè)過程,即:簡單——復(fù)雜——混沌。而在文章開頭所說的公共危機(jī)管理系統(tǒng)也一樣在這個(gè)范疇之內(nèi)。一個(gè)政府,和政府所處的環(huán)境,本身就處在一個(gè)相互平衡的狀態(tài),無論哪一方面發(fā)生過大的變動(dòng)而超過平衡所能承載的極限,就會(huì)使得整體產(chǎn)生巨大的波動(dòng),從而導(dǎo)致社會(huì)秩序的失調(diào)、混亂等結(jié)果。這就是所謂的公共危機(jī)。就像混沌理論中所描述的,公共危機(jī)具有突變、多變、失控等特性。

⑵所謂公共危機(jī)的突發(fā)性,在混沌理論中相對應(yīng)的就是無序中對初始條件的敏感依賴性。對于政府而言,也存在著作用相同的機(jī)制。假設(shè)當(dāng)前滿足一定前提下,公共危機(jī)在隱蔽的情況下積累,從而擴(kuò)散性地爆發(fā)諸多公共危機(jī)事件,對公共危機(jī)管理模式造成威脅。

⑶混沌現(xiàn)象內(nèi)在隨機(jī)性一定程度上表現(xiàn)為公共危機(jī)的不確定性。公共危機(jī)不僅是恒定存在的,也是內(nèi)在不可確定的。它們內(nèi)生于政府存在不確定性,這主要是因?yàn)槿说恼J(rèn)識能力有限,信息獲取不完整,進(jìn)行決策時(shí),政府管理人員根據(jù)內(nèi)外部環(huán)境變化自行判斷作出的是最佳選擇而非最優(yōu)選擇。

二、混沌理論在公共危機(jī)管理模式中的現(xiàn)實(shí)應(yīng)用

1.混沌理論在公共危機(jī)管理模式中的應(yīng)用背景

(1)理論背景?;煦缋碚摰膽?yīng)用和推廣是公共危機(jī)管理模式的系統(tǒng)理論演進(jìn)的必然要求。公共危機(jī)管理模式是一項(xiàng)復(fù)雜的系統(tǒng)工程,從系統(tǒng)角度對公共危機(jī)進(jìn)行綜合的、全面的系統(tǒng)管理,是公共危機(jī)管理的內(nèi)在本質(zhì)要求。系統(tǒng)管理理論傳統(tǒng)模式以一般系統(tǒng)理論為依據(jù),在此思維定勢下產(chǎn)生的系統(tǒng)管理理論已不太適用。隨著政府管理理念的轉(zhuǎn)變,促使危機(jī)管理實(shí)踐不再將公共危機(jī)當(dāng)做一種混亂無序現(xiàn)象,而是將公共危機(jī)視為走向秩序的前奏,更加強(qiáng)調(diào)把握危機(jī)中的轉(zhuǎn)機(jī),而混沌理論為更好地把握危機(jī)以及轉(zhuǎn)換創(chuàng)新公共危機(jī)管理模式提供了全新的理論框架。

(2)時(shí)代背景?;煦缋碚摰膽?yīng)用很大程度上反映出我國當(dāng)前情況。對于處在大力建設(shè)、發(fā)展特色社會(huì)主義的我國,這是一個(gè)特殊且重要的階段,因此,相對的各種公共危機(jī)多發(fā)也就成了必然。對于整個(gè)管理系統(tǒng)來說,也是一個(gè)嚴(yán)峻的考驗(yàn)。如此一來,對公共危機(jī)管理系統(tǒng)的強(qiáng)化、完善和革新就顯得勢在必行了。

2.混沌理論在公共危機(jī)管理模式中的應(yīng)用現(xiàn)狀

一方面,在公共危機(jī)管理實(shí)踐中,混沌理論在加強(qiáng)對轉(zhuǎn)型期我國公共危機(jī)的認(rèn)識,了解其特點(diǎn)及其誘因,探索公共危機(jī)管理規(guī)律,探尋公共危機(jī)演化的主導(dǎo)因素和創(chuàng)新公共危機(jī)管理模式等方面已經(jīng)具備了相當(dāng)?shù)难芯炕A(chǔ)。

另一方面,混沌理論對公共危機(jī)應(yīng)對、危機(jī)形成機(jī)理與公共危機(jī)演化規(guī)律還缺乏更高理論層次的深刻認(rèn)知,也尚未形成系統(tǒng)的知識體系,混沌理論的應(yīng)用還需不斷探索和深入。

三、公共危機(jī)管理模式與混沌理論的契合性探析

1.對初始環(huán)境和條件的敏感度的契合

混沌理論認(rèn)為,混沌狀態(tài)的非系統(tǒng)運(yùn)動(dòng)敏感地依賴于初始條件或者初始環(huán)境,初始環(huán)境經(jīng)過時(shí)間演化很可能造成不同結(jié)果,而公共危機(jī)管理模式系統(tǒng)也同樣具備這種混沌特性,公共危機(jī)的爆發(fā)都有一個(gè)臨界點(diǎn),當(dāng)臨界點(diǎn)的變化積累到一定程度時(shí),就會(huì)引發(fā)災(zāi)難性后果。

2008年,我國南方爆發(fā)特大雪災(zāi),災(zāi)情的嚴(yán)峻形勢和突發(fā)性,對我們政府的管理能力是一次不小的考驗(yàn)。天氣預(yù)報(bào)的誤差導(dǎo)致對未來估計(jì)不足,就直接使得了準(zhǔn)備嚴(yán)重的不充分,而在惡劣天氣的持續(xù)肆虐下,更大的災(zāi)情發(fā)生了。連續(xù)的惡劣天氣加上初始估計(jì)錯(cuò)誤,所產(chǎn)生的實(shí)際損失已經(jīng)遠(yuǎn)遠(yuǎn)比不上對社會(huì)地影響了,于是各種各樣的間接負(fù)面效應(yīng)隨之而生。因此,對初始條件具有較強(qiáng)的敏感度,也是公共危機(jī)管理系統(tǒng)的一個(gè)顯著特征。

2.隨機(jī)演進(jìn)過程中的契合

⑴從演進(jìn)過程角度看,混沌理論是系統(tǒng)從有序突然變?yōu)闊o序狀態(tài)的一種演化理論,是對確定性系統(tǒng)中出現(xiàn)的內(nèi)在隨機(jī)過程形成的途徑、機(jī)制的研究。而公共危機(jī)的本質(zhì)也是一種極其復(fù)雜的演化過程,由于混沌現(xiàn)象的普適性使得混沌理論的思想和方法迅速向各領(lǐng)域廣泛滲透,更為公共危機(jī)管理模式提供了新的系統(tǒng)研究視角。

(2)從內(nèi)在隨機(jī)性角度看,混沌理論認(rèn)為,即使沒有外部隨機(jī)作用,混沌系統(tǒng)自身也會(huì)產(chǎn)生隨機(jī)性,這是混沌理論固有的特征。在這種狀態(tài)下,簡單個(gè)體遵循簡單規(guī)律,隨機(jī)相互作用就能產(chǎn)生難以準(zhǔn)確預(yù)測的復(fù)雜行為。公共危機(jī)的演進(jìn)過程同樣也是一個(gè)微小差異從量變到質(zhì)變的過程。但這個(gè)過程有其特殊性,表現(xiàn)為其管理模式系統(tǒng)的內(nèi)在隨機(jī)性。公共危機(jī)管理模式中的很多不確定因素在一定程度上也是由于危機(jī)管理系統(tǒng)的隨機(jī)性所誘發(fā),這都是二者內(nèi)在契合性的具體體現(xiàn)。

四、基于混沌理論的視角創(chuàng)新公共危機(jī)管理模式

1.借鑒混沌理論和創(chuàng)新視野改進(jìn)傳統(tǒng)的公共危機(jī)管理模式

⑴借鑒混沌理論,以創(chuàng)新開放的視野把握我國公共危機(jī)管理模式,就是在學(xué)習(xí)借鑒國外經(jīng)驗(yàn)的基礎(chǔ)上,基于公共危機(jī)管理混沌特性,在推進(jìn)公共危機(jī)管理實(shí)踐中,探索出中國特色的公共危機(jī)管理模式,最終真正實(shí)現(xiàn)由危機(jī)管理模式學(xué)習(xí)到模式創(chuàng)新的根本性轉(zhuǎn)變。

⑵強(qiáng)化全局性觀念,針對傳統(tǒng)公共危機(jī)管理模式的弊端加以改進(jìn),建構(gòu)全局與局部、中央與地方、整體與部分三位一體的公共危機(jī)管理模式。混沌理論強(qiáng)調(diào)系統(tǒng)和整體特征不能還原為單個(gè)要素,在研究局部時(shí)要將其放在整體中。因此,公共危機(jī)管理要在全局性的宏觀決策觀念指導(dǎo)下,從戰(zhàn)略高度意識到公共危機(jī)事件呈現(xiàn)出跨國性、危機(jī)波及范圍越來越廣、復(fù)合型社會(huì)危機(jī)事件增多等顯著特點(diǎn),充分考慮危機(jī)可能的發(fā)展方向。

⑶構(gòu)建靈活的公共危機(jī)管理框架,改進(jìn)完善過分依賴?yán)硇运季S的傳統(tǒng)危機(jī)管理模式。對當(dāng)今存在的持續(xù)時(shí)間較長和綜合因素復(fù)雜的公共危機(jī)事件,理性決策模式在短時(shí)間內(nèi)可以準(zhǔn)確預(yù)測危機(jī)產(chǎn)生,但長時(shí)間則無法準(zhǔn)確預(yù)測,危機(jī)管理模式應(yīng)該加強(qiáng)理性思維基礎(chǔ)上的非理性因素的有效應(yīng)用,能夠從多個(gè)層面對預(yù)測產(chǎn)生影響,可以跳躍和創(chuàng)造性地瞬間把握危機(jī)本質(zhì),在最佳時(shí)機(jī)選擇公共危機(jī)管理模式中的最佳應(yīng)對方案。

2.創(chuàng)新構(gòu)建動(dòng)態(tài)型的公共危機(jī)管理模式

公共危機(jī)的混沌特性客觀上要求政府對公共危機(jī)的管理要處于一種動(dòng)態(tài)的變化過程之中,這就需要構(gòu)建公共危機(jī)管理的動(dòng)態(tài)應(yīng)對模式。首先,應(yīng)急機(jī)制要在常態(tài)下用力。在危機(jī)未發(fā)生之前,應(yīng)做好公共危機(jī)管理的制度建設(shè)、機(jī)構(gòu)建設(shè)、物資及知識儲(chǔ)備等工作,未雨綢繆,防患于未然。其次,危機(jī)防范意識和能力的培養(yǎng)要經(jīng)?;?、制度化。這種知識和能力需要通過專門的公共危機(jī)管理機(jī)制來進(jìn)行培訓(xùn)、教育和演練,也需要部門相互協(xié)調(diào),并將更多的人力和財(cái)務(wù)資源投入到公共危機(jī)管理模式的構(gòu)建中。

3.創(chuàng)新建構(gòu)知識需求型的政府公共危機(jī)管理模式

由于政府公共管理系統(tǒng)具有混沌特性,為改進(jìn)政府公共危機(jī)管理績效和質(zhì)量,這就需要改進(jìn)政府公共危機(jī)管理的學(xué)習(xí)機(jī)制,并能從不斷變化的環(huán)境中獲取新知識,構(gòu)建知識需求型的政府公共危機(jī)管理模式。具體框架如前圖所示:

在知識需求型的公共危機(jī)管理模式框架下,政府在指定了管理目標(biāo)之后,就要有相應(yīng)危機(jī)管理系統(tǒng)來支持運(yùn)作。經(jīng)過初步篩選后將其中有價(jià)值的留下,并入庫,在并行的管理系統(tǒng)之間流動(dòng)共享,從而形成一個(gè)由管理的模式、流程、各主體系統(tǒng)之間的多層危機(jī)管理系統(tǒng)。

4.創(chuàng)新構(gòu)建回應(yīng)型的公共危機(jī)管理模式

伴隨著構(gòu)建社會(huì)主義和諧社會(huì)的腳步,在我國公共危機(jī)管理實(shí)踐過程中,公共危機(jī)管理系統(tǒng)和其他系統(tǒng)密切相關(guān),諸如政治、經(jīng)濟(jì)、社會(huì)系統(tǒng)等,這就客觀上要求政府在公共危機(jī)管理過程中,應(yīng)該將混沌理論引入到政府公共危機(jī)管理中來,重新審視原有的公共危機(jī)管理理論與實(shí)踐。

總而言之,混沌理論作為一種新的理論視角,在公共危機(jī)管理中的應(yīng)用具有深厚背景,這將成為今后時(shí)期我國公共危機(jī)管理模式未來研究和改革的新方向。將混沌理論引入到政府公共危機(jī)管理中來,為推進(jìn)我國公共危機(jī)管理模式創(chuàng)新帶來諸多啟發(fā):首先,我們要清醒地認(rèn)識到,政府的危機(jī)管理系統(tǒng)同其他運(yùn)作的系統(tǒng)一樣,都有著混沌理論中的性質(zhì);其次是危機(jī)管理系統(tǒng)的混沌性是可控可調(diào)的,它并非雜亂無章而是遵循一定規(guī)律;第三,隨著社會(huì)的進(jìn)步和發(fā)展,危機(jī)管理機(jī)制也要進(jìn)步發(fā)展,要跟上社會(huì)的腳步,結(jié)合實(shí)際情況,做出完善和創(chuàng)新,為未來我國公共危機(jī)管理模式創(chuàng)新提供全新視角。

參考文獻(xiàn)

[1]傅毓維,劉拓,朱發(fā)根.混沌理論在公共危機(jī)管理中應(yīng)用背景分析[J].現(xiàn)代管理科學(xué), 2009 (2): 7-9.

[2]王東民,吳積親.基于混沌理論的公共危機(jī)管理研究[J] .中國安全科學(xué)學(xué)報(bào), 2008 (6).

[3]姜仁良.混沌理論視角下政府危機(jī)管理機(jī)制和對策研究[J].集團(tuán)經(jīng)濟(jì)研究, 2010 (3).

[4]薛瀾,張強(qiáng).危機(jī)管理:轉(zhuǎn)型期中國面臨的挑戰(zhàn)[M].北京:清華大學(xué)出版社, 2003.

第8篇:混沌現(xiàn)象范文

【關(guān)鍵詞】微弱電力信號;頻譜泄露;混沌振子;虛假間諧波

0 引言

眾所周知,一個(gè)理想的電力系統(tǒng)和供電系統(tǒng)是以單一恒定頻率和恒定幅值的穩(wěn)定電壓供電的,它的電壓和電流理論是純粹的正弦波形。隨著現(xiàn)代工業(yè)、交通等行業(yè)使用的換流設(shè)備數(shù)量越來越多、容量越來越大,另外電弧爐、家用電器等非線性用電設(shè)備接入電網(wǎng),將其產(chǎn)生的諧波和間諧波電流注入電網(wǎng),所有這些都影響了電能質(zhì)量。諧波為基波頻率整數(shù)倍的電壓或電流信號,間諧波為任何非整數(shù)倍基波頻率的電壓或電流信號。諧波使電能的生產(chǎn)、傳輸和利用的效率降低,使電氣設(shè)備過熱、產(chǎn)生振動(dòng)和噪聲,并使絕緣老化,使用壽命縮短,甚至發(fā)生故障或燒毀;頻率高于基波頻率的間諧波會(huì)干擾音頻設(shè)備正常工作,引起感應(yīng)電機(jī)噪聲和振動(dòng)等,頻率低于基波頻率的間諧波會(huì)引起電壓閃變,低頻繼電器的異常運(yùn)行等等。諧波和間諧波的危害使得治理和檢測就變得十分緊迫,然而間諧波多表現(xiàn)為微弱信號,其精準(zhǔn)檢測成為難點(diǎn),本論文利用混沌振子對周期信號十分敏感和噪聲的免疫特性,探索實(shí)現(xiàn)對微弱間諧波信號精準(zhǔn)檢測及對虛假間諧波的識別[1-5]。

1 頻譜泄漏

在諧波和間諧波測量中,所要處理的信號均是經(jīng)過采樣和A/D轉(zhuǎn)換得到的數(shù)字信號。設(shè)待測信號為x(t),采樣間隔為Ts秒,采樣頻率fs=1/Ts滿足采樣定理,即fs大于信號最高頻率分量的兩倍。則采樣信號為x(n)=x(n·Ts),并且采樣信號的長度總是有限的,即n=0,1,…,N-1。也就是說,所分析的信號的持續(xù)時(shí)間為T=N·Ts,這相當(dāng)于對無限長的信號做了截?cái)唷喈?dāng)于給無限長的信號加了一個(gè)矩形窗,因而造成離散傅立葉變換的泄漏現(xiàn)象[6]。

圖1 泄漏的產(chǎn)生

頻譜泄漏現(xiàn)象如圖1所示,顯然泄漏誤差來自兩個(gè)方面,由信號負(fù)頻分量引入的長范圍泄漏(Long-Range Leakage)和由窗的扇形損失引入的短范圍泄漏(Short-Range Leakage)。由于泄漏頻譜的存在,使得微弱電力信號淹沒在泄漏頻譜中難于檢測,同時(shí)由于頻譜泄露產(chǎn)生虛假間諧波,探索新的檢測方法就十分必要。

2 Duffing混沌振子特性分析

2.1 Duffing混沌振子對噪聲免疫特性分析[1]

常用的Duffing混沌振子方程為

■+k■-x+x3=γcos(ωt)(1)

其等價(jià)系統(tǒng)為

x■=ωx■x■=ω(-kx■+x■-x■■+γcos(ωt))(2)

對于給定的阻尼比k,隨著γ的變化,Duffing系統(tǒng)表現(xiàn)出的復(fù)雜的動(dòng)力學(xué)行為:

(1)當(dāng)γ=0時(shí),系統(tǒng)任意初值的演化軌線將收斂到其中的一個(gè)焦點(diǎn);

(2)當(dāng)γ從0逐漸增加時(shí),系統(tǒng)解在相空間中的軌線將出現(xiàn)偶階次分岔,系統(tǒng)按外加周期策動(dòng)力的周期或倍周期振蕩;

(3)當(dāng)γ進(jìn)一步增加至γc(混沌臨界值),系統(tǒng)將會(huì)產(chǎn)生Smale馬蹄意義下的混沌運(yùn)動(dòng);

(4)當(dāng)γ>γp(大周期臨界值)時(shí),系統(tǒng)將進(jìn)入大尺度周期振蕩。

混沌系統(tǒng)隨參數(shù)變化的分岔圖見圖2所示:

圖 2 Duffing混沌系統(tǒng)分岔圖

假設(shè)Duffing系統(tǒng)處在混沌臨界狀態(tài)的混沌解為x,由于0均值、方差為σ2的高斯白噪聲n(t)的影響,混沌解受到擾動(dòng)x。那么此時(shí)的Duffing方程為

(■+■)+k(■+■)-(x+x)+(x+x)3=γcos(ωt)+n(t)(3)

可以證明,E{x(t)}=0,方差D{x(t)}0。這說明噪聲對混沌系統(tǒng)的擾動(dòng)幾乎不存在,在實(shí)際檢測中t不可能為無窮大,所以噪聲會(huì)對系統(tǒng)產(chǎn)生一定的影響,但其影響較小,不會(huì)改變系統(tǒng)原有的運(yùn)行軌跡,只會(huì)使軌跡變得粗糙。因此,可以說混沌系統(tǒng)對噪聲表現(xiàn)出較強(qiáng)的免疫特性。

2.2 Duffing混沌振子對周期信號敏感特性分析[1]

考慮一種變形的Duffing方程

■+kω■-ω2x+ω2x3=ω2γcos(ωt)(4)

其中γcos(ωt)為周期策動(dòng)力,ω為策動(dòng)力角頻率,γ為周期策動(dòng)力幅值,方程(2-26)改寫為

■=ωy■=ω[-ky+x-x3+γcos(ωt)](5)

將系統(tǒng)狀態(tài)調(diào)整到混沌和大周期的臨界狀態(tài),此時(shí)γ=γp,外加信號假設(shè)為單頻信號,s(t)=acos((ω+ω)t+φ),其中ω為外加信號與振子策動(dòng)力頻率差,φ為相位差,噪聲為0均值的高斯白噪聲n(t),則檢測系統(tǒng)表示為

■=ωy■=ω[-ky+x-x3+γcos(ωt)+s(t)+n(t)](6)

可以證明,若ω=0,當(dāng)π-arccos■≤φ≤π+arccos■時(shí),系統(tǒng)仍保持混沌演化,當(dāng)φ不在這個(gè)區(qū)間時(shí),系統(tǒng)將由混沌態(tài)躍遷到大周期態(tài)。若ω≠0,此時(shí)系統(tǒng)將間歇性地出現(xiàn)混沌現(xiàn)象,間歇周期為2π/ω??梢婎l差不能太大,如果頻差太大會(huì)導(dǎo)致間歇混沌周期很小,而無法觀察間歇混沌行為。(下轉(zhuǎn)第290頁)

(上接第293頁)3 Duffing混沌振子對微弱電力信號的檢測

3.1 電力信號模型

考慮噪聲的信號模型為[7-10]

x(t)=■Am(t)sin[ωm(t)t+φm(t)]+v(t),v(t)為隨機(jī)噪聲(7)

根據(jù)v(t)噪聲類型不同,又可以分為白噪聲和色噪聲情況下的電力系統(tǒng)諧波和間諧波檢測。目前較多考慮的情況為

x(t)=■Amsin[ωmt+φm]+v(t),(8)

其中v(t)為白噪聲,工程中信號的初始采樣點(diǎn)具有隨機(jī)性,可以反映為初始相位的隨機(jī)性,可以把φm看作服從0~2π范圍內(nèi)均勻分布的隨機(jī)變量。

3.2 檢測步驟

第一步:利用FFT算法檢測電力信號基波和諧波成分;

第二步:進(jìn)行陷波器設(shè)計(jì),濾除電力信號基波和諧波成分,保留殘余電力信號;

第三步:構(gòu)建Duffing混沌振子電路,參數(shù)置于大周期臨界值;

第四步:間諧波信號作為Duffing混沌振子電路,觀察電路輸出特性。

3.3 檢測結(jié)果判斷

由于間諧波在殘余信號中,無可避免會(huì)受到噪聲干擾,然而Duffing混沌振子電路對噪聲具有特殊的免疫特性,不會(huì)對周期信號間諧波的檢測產(chǎn)生干擾。觀察Duffing混沌振子電路的輸出特性,按照Duffing混沌振子電路出現(xiàn)分叉的動(dòng)力學(xué)行為,可以判斷間諧波的存在和虛假間諧波的識別。

4 結(jié)論

利用Duffing混沌振子對噪聲的免疫特性和對微弱周期信號的敏感特性,可以高精度實(shí)現(xiàn)對微弱信號間諧波的檢測和對虛假間諧波的識別,但是該方法只能對微弱電力信號間諧波的存在和虛假進(jìn)行識別,對信號的頻譜特征識別還需要應(yīng)用譜估計(jì)和FFT算法進(jìn)一步識別。

【參考文獻(xiàn)】

[1]魏恒東.混沌直擴(kuò)信號檢測與與混沌同步研究[D].成都:電子科技大學(xué),2010.

[2]梅永.同步采樣的最佳實(shí)現(xiàn)與誤差校正新算法[D].南京:河海大學(xué),2006.

[3]戴先中.準(zhǔn)同步采樣及其在非正弦功率測量中的應(yīng)用[J].儀器儀表學(xué)報(bào),1984(4):390-396..

[4]王柏林,梅永. 電力系統(tǒng)諧波分析的近似同步法[J]. 儀器儀表學(xué)報(bào),2006,27(5):484-488.

[5]王柏林.頻譜小偏差校正新方法[J].電力系統(tǒng)自動(dòng)化,2005,29(20):46-49.

[6]王柏林.隨機(jī)環(huán)境下電力系統(tǒng)諧波分析算法[J].電力系統(tǒng)自動(dòng)化,2008,32(3):22-25.

[7]張賢達(dá). 現(xiàn)代信號處理[M].北京:清華大學(xué)出版社,2002.

[8]王柏林,劉華.用準(zhǔn)同步離散Hilbert變換測量無功功率[J].電測與儀表,2003,40(12):13-15.

第9篇:混沌現(xiàn)象范文

    物理實(shí)驗(yàn)教學(xué)改革提供新思路。

    關(guān)鍵詞:混沌效應(yīng),蔡氏電路,仿真,注意事項(xiàng),教學(xué)討論

    大學(xué)物理實(shí)驗(yàn)中混沌實(shí)驗(yàn)有助于提高學(xué)生的學(xué)習(xí)主動(dòng)性、積極性,激發(fā)學(xué)生的學(xué)習(xí)興趣。但由于傳統(tǒng)的混沌實(shí)驗(yàn)儀器(蔡氏電路)往往受到場地、設(shè)備和操作等的局限,不能很好的培養(yǎng)學(xué)生分析問題和解決問題能力。因此,利用軟件仿真混沌實(shí)驗(yàn)提高實(shí)驗(yàn)教學(xué)質(zhì)量擺在了物理實(shí)驗(yàn)教學(xué)工作者的面前。目前有很多人對混沌仿真實(shí)驗(yàn)進(jìn)行著有意義的討論與實(shí)踐。

    高英俊[1]等人認(rèn)為混沌中利用仿真中可以結(jié)合專業(yè)特點(diǎn), 適當(dāng)延伸到聲學(xué)混沌, 光學(xué)湍流等,實(shí)現(xiàn)有效教學(xué)。張建忠[2]認(rèn)為利用Matlab數(shù)值模擬觀察李薩如圖形能讓學(xué)生理性地理解非線性混沌現(xiàn)象,并可以指導(dǎo)學(xué)生在實(shí)驗(yàn)中更加有效地調(diào)節(jié)非線性電路混沌儀。苗明川[3]等人認(rèn)為仿真混沌實(shí)驗(yàn)可以讓學(xué)生既了解了混沌的概念, 又能掌握數(shù)據(jù)處理、電腦編程等方面的知識,又增加了學(xué)習(xí)興趣。

    由最近的研究進(jìn)展可以看出,盡管很多大學(xué)物理實(shí)驗(yàn)教學(xué)者認(rèn)識到仿真混沌實(shí)驗(yàn)在提高學(xué)習(xí)興趣,培養(yǎng)對混沌的認(rèn)識有重要作用。然而,對于如何在培養(yǎng)學(xué)生認(rèn)識非線性動(dòng)力學(xué)的過程中注意事項(xiàng),提高大學(xué)生的獨(dú)立思考能力以及創(chuàng)新能力方面探討較少。本文結(jié)合蔡氏電路的原理,闡述如何通過Matlab軟件實(shí)現(xiàn)非線性現(xiàn)象中倍周期分岔相圖的數(shù)值模擬。并指出以上過程中實(shí)現(xiàn)培養(yǎng)學(xué)生動(dòng)手能力和創(chuàng)新意識的注意事項(xiàng),為大學(xué)物理實(shí)驗(yàn)教學(xué)改革提供新思路。

    1蔡氏電路模型、仿真原理以及結(jié)果

    三階蔡氏電路模型如圖1所示,其中R為有源非線性電阻,其伏安特性如圖2所示,Ga為中間線段斜率,Gb為兩段直線斜率。

    根據(jù)電流平衡方程,描述圖1的非線性動(dòng)力學(xué)方程為[4]:

    式(1)中G為線性電阻導(dǎo)納,即 ;和分別表示電容器上的電壓;表示電感上的電流;表示非線性電阻的導(dǎo)納。

    本文參照文獻(xiàn)[5]利用四階龍格庫塔數(shù)值積分法模擬混沌形成過程。由于蔡氏電路非線性動(dòng)力學(xué)方程中包括L、C1、C2、G、Ga、Gb、E 7個(gè)參數(shù),且各參數(shù)變化對輸出特性的影響各不相同。因此,本實(shí)驗(yàn)選擇導(dǎo)納G作為控制參數(shù),即RV變化范圍0~2.5KΩ;其他參數(shù)選取以下固定值,

    周期性分岔過程中,變化如表1所示;對應(yīng)的李薩如圖,如圖3-圖10所示。

    表1 倍周期分岔過程

    2仿真過程注意事項(xiàng)的討論

    從圖3至圖10的變化過程中,可以清晰地看出倍分岔過程為:1p2p4p8p陣發(fā)混沌3p單吸引子雙吸引子,清晰地再現(xiàn)了真實(shí)實(shí)驗(yàn)。仿真過程中需要注意的事項(xiàng)包括:

    (1)由于真實(shí)蔡氏電路混沌實(shí)驗(yàn)中電子元器件的性能指標(biāo)精度最多可以保證4-5位注意事項(xiàng),而在仿真實(shí)驗(yàn)中可以無限設(shè)置參數(shù)的精度;所以為了防止由于精度設(shè)置過高導(dǎo)致仿真過程運(yùn)行很慢,需要對參數(shù)值精度進(jìn)行限制,一般選擇六位保留位即可。

    (2)調(diào)節(jié)值實(shí)現(xiàn)混沌演化過程中,需要先找到平衡點(diǎn)時(shí)的值,這將大大減少仿真過程的計(jì)算量;具體方法就是以100歐姆作為一個(gè)步長,大致仿真一下實(shí)驗(yàn),觀察結(jié)果,然后再減小步長,調(diào)節(jié)混沌演化過程。

    (3)蔡氏電路非線性動(dòng)力學(xué)方程中參數(shù)較多,為了簡化仿真過程中變化參數(shù)值過多導(dǎo)致仿真效果不好,開始需把變量個(gè)數(shù)控制在1個(gè);然后再繼續(xù)調(diào)節(jié)其他參數(shù)研究它們對混沌演化過程的影響。

    (4)仿真過程中微分方程組的求解也可以采用離散化的方式處理,但對初始參數(shù)精度要求很高,且較難調(diào)節(jié)出倍分岔整個(gè)過程,只能單獨(dú)的觀察到單吸引子或雙吸引子。所以本文采用四階龍格庫塔數(shù)值積分法仿真混沌演化過程。這一點(diǎn)需特別注意。

    3結(jié)語

    仿真蔡氏電路混沌效應(yīng)的教學(xué),可以讓學(xué)生對非線性系統(tǒng)的復(fù)雜動(dòng)力學(xué)行有一個(gè)理性認(rèn)識;但需要注意此仿真實(shí)驗(yàn)的細(xì)節(jié),這樣才能有利于提高學(xué)生學(xué)習(xí)的主動(dòng)性、積極性注意事項(xiàng),激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的創(chuàng)新意識。否則,仿真過程會(huì)挫敗學(xué)生的興趣,影響教學(xué)效果。

    總之,非線性電路混沌實(shí)驗(yàn)是一個(gè)創(chuàng)新實(shí)驗(yàn),仿真蔡氏電路混沌效應(yīng)的教學(xué)是探索一種新的實(shí)驗(yàn)教學(xué)模式,這種探索模式不能一蹴而就,需要在實(shí)踐中不斷探索,不斷解決實(shí)踐中的問題。

    參考文獻(xiàn)

    [1]高英俊,王態(tài)成,馬樹元,等.工科物理實(shí)驗(yàn)教學(xué)改革探索[J].實(shí)驗(yàn)技術(shù)與管理,2004(21):271-275

    [2]張建忠.用Matlab數(shù)值模擬非線性電路混沌實(shí)驗(yàn)[J].實(shí)驗(yàn)技術(shù)與管理,2007(24):86-88

    [3]苗明川,唐芳,張淼,等.混沌實(shí)驗(yàn)數(shù)據(jù)處理及仿真[J].大學(xué)物理,2006(25):53-57