公務(wù)員期刊網(wǎng) 精選范文 概率統(tǒng)計(jì)教學(xué)范文

概率統(tǒng)計(jì)教學(xué)精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的概率統(tǒng)計(jì)教學(xué)主題范文,僅供參考,歡迎閱讀并收藏。

概率統(tǒng)計(jì)教學(xué)

第1篇:概率統(tǒng)計(jì)教學(xué)范文

一、選講相關(guān)史料,激發(fā)學(xué)生興趣

在教學(xué)過(guò)程中,可適當(dāng)選講部分相關(guān)史料,如歷史上著名的概率統(tǒng)計(jì)學(xué)家泊松、高斯、伯努利、切比雪夫、辛欽、費(fèi)歇爾等對(duì)概率論與數(shù)理統(tǒng)計(jì)的貢獻(xiàn),概率論的產(chǎn)生,統(tǒng)計(jì)重要的思想、方法、理論的形成、發(fā)展和意義等.培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和認(rèn)知概率統(tǒng)計(jì)的能力,增強(qiáng)其學(xué)習(xí)興趣和自信心.

例如,在第一次課上,為了讓學(xué)生了解概率的起源,同時(shí),激發(fā)學(xué)生的求知欲,我們可以介紹著名的賭博問(wèn)題:17世紀(jì),法國(guó)貴族德.梅爾在擲骰子賭博中,有急事必須中途停止賭博。雙方各出的100法郎的賭資要靠對(duì)勝負(fù)的預(yù)測(cè)進(jìn)行分配,但不知用什么樣的比例分配才算合理。德·梅爾寫(xiě)信向當(dāng)時(shí)法國(guó)的最具聲望的數(shù)學(xué)家帕斯卡請(qǐng)教,帕斯卡又和當(dāng)時(shí)的另一位數(shù)學(xué)家費(fèi)爾馬長(zhǎng)期通信。于是,一個(gè)新的數(shù)學(xué)分支-概率論產(chǎn)生了,這就是歷史上著名的“分賭注問(wèn)題”。然后將這一問(wèn)題作適當(dāng)?shù)母膭?dòng):在一次乒乓球比賽中設(shè)立獎(jiǎng)金5000元,比賽規(guī)定誰(shuí)先勝了6盤(pán),誰(shuí)獲得全部獎(jiǎng)金。設(shè)甲,乙二人的球技相等,現(xiàn)已打了6盤(pán),甲5勝1負(fù),由于某種特殊的原因必須中止比賽。問(wèn)這5000元應(yīng)如何分配才算公平?并讓同學(xué)們大膽猜想,要求每位同學(xué)就此問(wèn)題都要提出自己的分配方案,并以書(shū)面的形式上交,作為平時(shí)成績(jī)的依據(jù),答對(duì)的學(xué)生將會(huì)獲得加分的機(jī)會(huì),學(xué)生回答踴躍,答案也呈現(xiàn)多樣化,其中不乏正確的解決方案.最后,告訴學(xué)生,我們將在后面學(xué)完數(shù)學(xué)期望后再來(lái)介紹解決這個(gè)問(wèn)題的其中一種方法.這樣,就激起了學(xué)生的求知欲望,使學(xué)生能夠帶著問(wèn)題去學(xué)習(xí),讓被動(dòng)的學(xué)習(xí)變?yōu)橹鲃?dòng),學(xué)習(xí)的效果自然就突出了。

二、精挑例子,突出趣味性

概率論與數(shù)理統(tǒng)計(jì)是數(shù)學(xué)的一個(gè)有特色的分支,從它的產(chǎn)生和發(fā)展過(guò)程都有著耐人尋味、引人入勝的情節(jié),這就為激發(fā)學(xué)生認(rèn)知?jiǎng)右蛱峁┝肆己玫沫h(huán)境和條件.教學(xué)中,教師應(yīng)致力于從每個(gè)概念的直觀背景入手,精心選擇一個(gè)個(gè)有趣的實(shí)例,去激發(fā)學(xué)生的興趣,使學(xué)生在趣味性中掌握概率論與數(shù)理統(tǒng)計(jì)的基本知識(shí).

例如在講授古典概率型中的投球模型時(shí),我們可以引入歷史上有名的生日問(wèn)題。每個(gè)人對(duì)自己的生日都是牢記于心的,如果遇到與自己同一天生日的人,總有一種親切感和驚異感,覺(jué)得是緣分使然??梢詥l(fā)學(xué)生利用概率的思想來(lái)思考,分析其中緣由,解釋這種現(xiàn)象。假如某班有n個(gè)人(n≤365),每人等可能地出生于一年365天中的任何一天,問(wèn)該班至少有2人同一天生日的概率有多大?憑直觀感覺(jué)判斷,當(dāng)班級(jí)人數(shù)較少時(shí)(如n=64),這個(gè)概率不會(huì)太大,因?yàn)橐WC100%有2人同一天生日,至少需要366人,而64與366差距甚遠(yuǎn),相差302。在給出具體解答之前,可以先讓班上同學(xué)把自己的生日寫(xiě)出來(lái),再略作統(tǒng)計(jì),結(jié)果將會(huì)出人意料!

又如,保險(xiǎn)機(jī)構(gòu)是較早使用概率統(tǒng)計(jì)的部門(mén)之一,保險(xiǎn)公司為了恰當(dāng)估計(jì)企業(yè)的收支和風(fēng)險(xiǎn),需要計(jì)算各種各樣的概率.下面是賠償金的確定問(wèn)題:據(jù)統(tǒng)計(jì),某年齡段的健康人在五年內(nèi)死亡的概率為0.002,保險(xiǎn)公司準(zhǔn)備開(kāi)辦該年齡的五年人壽保險(xiǎn)業(yè)務(wù),預(yù)計(jì)有3000人參加保險(xiǎn),條件是參加者需交保險(xiǎn)金10元,若五年之內(nèi)死亡,公司將支付賠償金a元(待定),便有以下幾個(gè)問(wèn)題:(1)確定a,使保險(xiǎn)公司期望盈利;(2)確定a,使保險(xiǎn)公司盈利的可能性超過(guò)90%;(3)確定a,使保險(xiǎn)公司的期望盈利超過(guò)1萬(wàn)元;這一系列問(wèn)題的解決需要綜合運(yùn)用概率論知識(shí).給出這樣的案例分析題,組織討論課,通過(guò)這一環(huán)節(jié)加深學(xué)生對(duì)教學(xué)內(nèi)容的綜合性、應(yīng)用性和創(chuàng)意性的理解、歸納和整合,將有利于增強(qiáng)學(xué)習(xí)氛圍,活躍課堂,激緒,開(kāi)發(fā)思維,有利于個(gè)人素質(zhì)和協(xié)作能力的培養(yǎng).

我們生活的方方面面,每一個(gè)理論都有其直觀背景.又如其他“擲骰子游戲”、“摸球之謎”“、蒲豐拋針”“、有獎(jiǎng)儲(chǔ)蓄”等等.這些不僅直觀地體現(xiàn)了有關(guān)知識(shí)的客觀背景,而且還可以把概率結(jié)論的發(fā)現(xiàn)過(guò)程予以還原或模擬,使學(xué)生通過(guò)自己的思維再現(xiàn)知識(shí)發(fā)生過(guò)程的各個(gè)方面,一旦有了學(xué)習(xí)興趣,興趣就可以轉(zhuǎn)化為樂(lè)趣,樂(lè)趣又轉(zhuǎn)化為志趣,持久穩(wěn)定的志趣就能使學(xué)生保持經(jīng)久不衰的求知?jiǎng)恿?

三、結(jié)束語(yǔ)

第2篇:概率統(tǒng)計(jì)教學(xué)范文

歷史發(fā)生原理認(rèn)為個(gè)體的數(shù)學(xué)認(rèn)識(shí)過(guò)程與人類(lèi)的數(shù)學(xué)認(rèn)識(shí)過(guò)程具有相似性.概率統(tǒng)計(jì)教學(xué)可以從概率統(tǒng)計(jì)的發(fā)展史中尋求指導(dǎo),從而借鑒歷史經(jīng)驗(yàn),優(yōu)化教學(xué)設(shè)計(jì),加速學(xué)生對(duì)概率知識(shí)和理論的接受過(guò)程.概率是一般教材中的基本概念,其處理方式遵循這樣的主線:概率是事件發(fā)生可能性大小的度量—頻率的穩(wěn)定值—古典概率—幾何概率—公理化定義.概率是隨機(jī)事件發(fā)生可能性大小的一種度量,這一直觀概念已被普遍認(rèn)可.但這只是概率的功能性解釋?zhuān)⒉皇撬臄?shù)學(xué)定義.概率的解釋與定義是在爭(zhēng)議中發(fā)展的.客觀概率學(xué)派認(rèn)為任一事件發(fā)生的概率是其客觀屬性;相反,主觀學(xué)派則認(rèn)為概率是人的主觀判斷.客觀概率學(xué)派以拉普拉斯在1812年出版的《概率的分析理論》中所提出的概率古典定義為代表,即事件的概率等于有利事件的結(jié)果數(shù)與所有可能的結(jié)果數(shù)之比.然而,這種定義討論的范疇有明顯的局限性,只適用于隨機(jī)試驗(yàn)所有可能結(jié)果為有限等可能的情形;而且,對(duì)于同一事件,從不同的等可能性角度考慮可算出不同的概率,從而會(huì)產(chǎn)生悖論.此外,對(duì)于概率的概念又有頻率學(xué)派、貝葉斯學(xué)派、信念學(xué)派的不同認(rèn)識(shí)和觀點(diǎn).其中頻率學(xué)派的觀點(diǎn)是大多數(shù)現(xiàn)行教材所接受的,即概率是頻率的穩(wěn)定值,頻率穩(wěn)定于概率又需要在概率的意義下來(lái)刻畫(huà).歷史上著名的貝特朗悖論使人們對(duì)“何為概率”的困惑放大到了極致,這個(gè)問(wèn)題解決不了,當(dāng)時(shí)所有研究成果就不能整合,概率理論成了不體系,也無(wú)法形成一個(gè)獨(dú)立的學(xué)科.而要解決這個(gè)問(wèn)題,就要給出概率的嚴(yán)格定義,將概率論公理化,并在此基礎(chǔ)上推演概率的理論體系.公理化是19世紀(jì)末以來(lái)數(shù)學(xué)的各個(gè)分支中廣泛流傳的一股潮流——將一些假定作為無(wú)需證明的公理,其它結(jié)論則由公理演繹推出.在這種背景下,1933年俄國(guó)數(shù)學(xué)家柯?tīng)柲缏宸蛟跍y(cè)度論的基礎(chǔ)上綜合了前人的研究結(jié)果提出了概率的公理化定義.概率的公理化定義被廣泛地接受使概率論成為嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)分支,對(duì)近幾十年來(lái)概率論的迅速發(fā)展起到了積極的作用.教學(xué)中,教師必須了解并熟悉概率這一概念的發(fā)展歷史,對(duì)概念有清晰準(zhǔn)確的認(rèn)識(shí).在教學(xué)時(shí)穿插這些內(nèi)容,不僅可以使學(xué)生清晰準(zhǔn)確地把握概念,還可以增強(qiáng)學(xué)生對(duì)概率統(tǒng)計(jì)的感性認(rèn)識(shí),從而加深對(duì)概念的理性認(rèn)識(shí),優(yōu)化知識(shí)接受的銜接過(guò)程,體會(huì)一個(gè)學(xué)科知識(shí)體系建立的嚴(yán)謹(jǐn)性、辯證性和復(fù)雜性,從而培養(yǎng)學(xué)生嚴(yán)密的邏輯思維,發(fā)展其創(chuàng)新意識(shí),培養(yǎng)其睿智和實(shí)事求是的人格.

2還原知識(shí)的歷史進(jìn)程,降低新知識(shí)的抽象性

現(xiàn)代數(shù)學(xué)教材普遍都是按照知識(shí)的內(nèi)在邏輯進(jìn)行編排,很少按照數(shù)學(xué)問(wèn)題的研究進(jìn)程進(jìn)行著作.這樣的安排在邏輯結(jié)構(gòu)上是科學(xué)的、嚴(yán)謹(jǐn)?shù)?,但卻忽略了數(shù)學(xué)問(wèn)題研究的歷史痕跡.教師在教學(xué)過(guò)程中,應(yīng)盡量地還原知識(shí)的歷史進(jìn)程,降低新知識(shí)的抽象性.正態(tài)分布是概率論中最重要的一種連續(xù)型分布,它屬于概率論的研究領(lǐng)域,但也是解決統(tǒng)計(jì)學(xué)問(wèn)題的基石,它的提出具有深刻的理論背景和極其廣泛的應(yīng)用價(jià)值.在教學(xué)中對(duì)正態(tài)分布的學(xué)習(xí),通常是直接給出概率密度或分布函數(shù),將其稱(chēng)為正態(tài)分布.但這會(huì)讓學(xué)生感覺(jué)接受生硬,理解抽象,記憶困難.理論背景上,正態(tài)分布產(chǎn)生于棣莫弗的p0.5的二項(xiàng)分布極限研究,后來(lái)拉普拉斯對(duì)p0.5的情況做了更多的分析,并把二項(xiàng)分布的正態(tài)近似推廣到了任意p的情況.二項(xiàng)分布的極限分布形式被推導(dǎo)出來(lái),由此產(chǎn)生了正態(tài)密度函數(shù),相應(yīng)的結(jié)果稱(chēng)為棣莫弗-拉普拉斯中心極限定理.經(jīng)拉普拉斯等學(xué)者的研究,20世紀(jì)30年代獨(dú)立變量和的中心極限定理的一般形式最終完成.此后研究發(fā)現(xiàn),一系列的重要統(tǒng)計(jì)量在樣本量n時(shí),其極限分布都具有正態(tài)形式.?dāng)?shù)學(xué)家進(jìn)而合理地解釋了為什么實(shí)際中遇到的許多隨機(jī)變量或者統(tǒng)計(jì)量都近似服從正態(tài)分布,可以說(shuō)這是概率統(tǒng)計(jì)中具有里程碑意義的發(fā)現(xiàn).?dāng)?shù)理統(tǒng)計(jì)教材中一般是先認(rèn)識(shí)正態(tài)分布,中心極限定理則在此之后學(xué)習(xí).在學(xué)習(xí)正態(tài)分布的定義之前,教師可以設(shè)計(jì)一些具有明顯正態(tài)性現(xiàn)象的數(shù)據(jù),而后進(jìn)行描述性統(tǒng)計(jì)分析,給出頻率直方圖,并解釋這種具有兩頭小、中間大的分布現(xiàn)象是普遍的,也是常態(tài)的.對(duì)概率論中常見(jiàn)分布的知識(shí)背景的了解和掌握,有助于教師在課程設(shè)計(jì)和講授過(guò)程中注意課程內(nèi)容的銜接和承上啟下的相互關(guān)系.借助數(shù)學(xué)家研究數(shù)學(xué)問(wèn)題的進(jìn)程史實(shí),可降低新知識(shí)的抽象性,使學(xué)生易于接受和掌握,并提高應(yīng)用的靈活性.

3注重統(tǒng)計(jì)思想,引導(dǎo)靈活應(yīng)用

第3篇:概率統(tǒng)計(jì)教學(xué)范文

關(guān)鍵詞:概率統(tǒng)計(jì);教學(xué)內(nèi)容;教學(xué)方法;考核方法

中圖分類(lèi)號(hào):G642文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1671—1580(2013)08—0149—02

概率論與數(shù)理統(tǒng)計(jì)是大學(xué)各專(zhuān)業(yè)必修的一門(mén)重要的基礎(chǔ)課,在經(jīng)濟(jì)、管理、工程和農(nóng)林醫(yī)各個(gè)領(lǐng)域都有廣泛應(yīng)用,是應(yīng)用最活躍、與人們生活關(guān)系最密切的數(shù)學(xué)分支。概率統(tǒng)計(jì)課程在各大學(xué)開(kāi)設(shè)的歷史久遠(yuǎn),教學(xué)體系建設(shè)方面無(wú)論是教學(xué)內(nèi)容還是教學(xué)方法、考核方式都形成了相對(duì)固定的模式,注重基本概念和理論知識(shí)的教學(xué)和考核,而輕實(shí)踐,不能充分發(fā)揮概率統(tǒng)計(jì)課程本身理論實(shí)際密切結(jié)合的特點(diǎn)。隨著大學(xué)教學(xué)改革的不斷深化,要更好地為經(jīng)濟(jì)發(fā)展提供數(shù)學(xué)知識(shí)的支撐,必須探討并實(shí)施教學(xué)體系改革新模式。

一、 概率統(tǒng)計(jì)教學(xué)體系現(xiàn)狀分析

作為傳統(tǒng)的數(shù)學(xué)課程,概率統(tǒng)計(jì)教材盡管林林總總,但內(nèi)容相對(duì)固定,基本都包含隨機(jī)事件及其概率、隨機(jī)變量及其分布、數(shù)字特征、大數(shù)定律與中心極限定理、樣本分布、參數(shù)估計(jì)、假設(shè)檢驗(yàn)、回歸分析等理論教學(xué)內(nèi)容。無(wú)論是采用多媒體教學(xué)方式還是板書(shū)方式,或者是二者的有機(jī)結(jié)合,都只有課堂理論教學(xué),缺乏實(shí)踐性的教學(xué)環(huán)節(jié)。在課堂教學(xué)中也基本是教師講授為主,以學(xué)生為主體的教學(xué)理念不能得到充分體現(xiàn)??己朔绞街饕亲鳂I(yè)、測(cè)驗(yàn)和理論考試。傳統(tǒng)的教學(xué)過(guò)程中往往只強(qiáng)調(diào)理論的嚴(yán)謹(jǐn)完整,只注重培養(yǎng)學(xué)生的邏輯推理能力和抽象思維能力,而忽視了學(xué)生的動(dòng)手能力與實(shí)踐能力的培養(yǎng),這就造成了學(xué)生學(xué)完課程后掌握了大量的定義、定理和公式,而在實(shí)踐中卻不會(huì)靈活運(yùn)用課程的思想方法,或者由于統(tǒng)計(jì)計(jì)算復(fù)雜煩瑣, 如果不掌握適當(dāng)?shù)挠?jì)算機(jī)技術(shù)和統(tǒng)計(jì)分析軟件僅通過(guò)手工計(jì)算難以實(shí)現(xiàn),而使學(xué)生失去了學(xué)習(xí)的興趣。所以在傳統(tǒng)教學(xué)模式下,概率統(tǒng)計(jì)課程一直是學(xué)生認(rèn)為比較難學(xué)的課程。從而導(dǎo)致理論實(shí)踐嚴(yán)重脫節(jié),影響了實(shí)際教學(xué)效果[1]。

另外,長(zhǎng)期以來(lái),學(xué)生只是把概率論與數(shù)理統(tǒng)計(jì)的學(xué)習(xí)當(dāng)作一門(mén)考研的課程,于是有考研想法的學(xué)生會(huì)花很多時(shí)間做解題訓(xùn)練,沒(méi)有考研想法的學(xué)生只為拿到學(xué)分了事,沒(méi)有學(xué)習(xí)興趣,碰到學(xué)習(xí)中的難點(diǎn)就出現(xiàn)逃避的現(xiàn)象,而沒(méi)有體會(huì)到概率統(tǒng)計(jì)在實(shí)際生活和生產(chǎn)實(shí)踐中的廣泛應(yīng)用。造成這種情況的原因也在于教學(xué)中重理論輕實(shí)踐,學(xué)生只是被動(dòng)接受理論講授,沒(méi)有實(shí)踐環(huán)節(jié)的訓(xùn)練要求和考核,學(xué)生對(duì)概率統(tǒng)計(jì)的應(yīng)用性自然就體會(huì)不到或體會(huì)不深。

二、概率統(tǒng)計(jì)教學(xué)體系改革模式

1.教學(xué)內(nèi)容改革

自2004年新課標(biāo)開(kāi)始在高級(jí)中學(xué)試點(diǎn)以來(lái),目前已在全國(guó)大多數(shù)高級(jí)中學(xué)推廣,高中數(shù)學(xué)教材發(fā)生了很大變化,部分原來(lái)屬于大學(xué)講授的概率論與數(shù)理統(tǒng)計(jì)的知識(shí)內(nèi)容現(xiàn)在高中已有涉及,高中和大學(xué)教學(xué)內(nèi)容重疊部分必須做好新舊內(nèi)容的過(guò)渡和銜接。由于目前大學(xué)課程學(xué)時(shí)都在壓縮,這部分重疊內(nèi)容可以通過(guò)快速回放的方式展現(xiàn)給學(xué)生,形成學(xué)生記憶的喚醒和再現(xiàn),減少學(xué)時(shí)。

教學(xué)內(nèi)容上,在基本理論教學(xué)中,適當(dāng)穿插實(shí)踐內(nèi)容,將Excel、SPSS、Matlab這些數(shù)據(jù)分析軟件在概率統(tǒng)計(jì)方面的應(yīng)用功能提供給學(xué)生,如應(yīng)用Excel函數(shù)功能計(jì)算各種分布[2];在應(yīng)用數(shù)字特征概念進(jìn)行證券投資組合分析時(shí),應(yīng)用Matlab求解最大收益[3];在數(shù)理統(tǒng)計(jì)假設(shè)檢驗(yàn)和回歸分析應(yīng)用時(shí)利用SPSS[4]。從而引導(dǎo)學(xué)生加強(qiáng)概率統(tǒng)計(jì)的實(shí)際應(yīng)用,提高學(xué)生利用計(jì)算機(jī)解決實(shí)際問(wèn)題的能力。

在教學(xué)用例的選擇上,盡量貼近學(xué)生的專(zhuān)業(yè)。由于概率統(tǒng)計(jì)課程是大學(xué)理工、財(cái)經(jīng)、農(nóng)林醫(yī)各專(zhuān)業(yè)的必修課程,一般教材中例題的選擇也涉及多個(gè)領(lǐng)域,但如果在例題、習(xí)題的選擇上下些功夫,通過(guò)更新例題,將概率統(tǒng)計(jì)的基礎(chǔ)理論與專(zhuān)業(yè)實(shí)踐相結(jié)合,就能更好地激發(fā)學(xué)生學(xué)習(xí)興趣,提高學(xué)生在專(zhuān)業(yè)領(lǐng)域運(yùn)用概率統(tǒng)計(jì)知識(shí)的能力。如對(duì)于財(cái)經(jīng)專(zhuān)業(yè)學(xué)生,在用例選擇時(shí)可以使用保險(xiǎn)理賠、證券投資方面的例題,對(duì)于醫(yī)學(xué)專(zhuān)業(yè)學(xué)生,選擇疾病發(fā)生、醫(yī)學(xué)檢驗(yàn)方面的例題。這項(xiàng)工作的確需要在課程內(nèi)容準(zhǔn)備方面花費(fèi)更多的精力,有時(shí)還需要結(jié)合專(zhuān)業(yè)期刊的最新研究成果,有時(shí)需要教師自己設(shè)計(jì)題目,但如果做得成熟了,也會(huì)促進(jìn)教材建設(shè)工作。

2.教學(xué)方法改革

(1)學(xué)生自學(xué)加討論教學(xué)法

高中教改實(shí)施多年,學(xué)生無(wú)論是自學(xué)能力還是對(duì)概率統(tǒng)計(jì)知識(shí)的內(nèi)容了解程度都有了顯著提高,因此,對(duì)于概率統(tǒng)計(jì)大學(xué)高中內(nèi)容重疊部分,可以提前在網(wǎng)上自學(xué)提綱和研討內(nèi)容,通過(guò)在課堂上以學(xué)生為主體的方式解決問(wèn)題,最后教師總結(jié)和做知識(shí)點(diǎn)快速回放,從而壓縮部分學(xué)時(shí),提高教學(xué)效率,增加課容量。

對(duì)于Excel、SPSS、Matlab這些數(shù)據(jù)分析軟件,由于課程學(xué)時(shí)有限,也不可能在課堂上花很多時(shí)間講授,只能指明軟件的使用方向,由學(xué)生通過(guò)自學(xué)的方式來(lái)完成。這部分內(nèi)容的自學(xué)建議以小組學(xué)習(xí)的方式開(kāi)展,由學(xué)習(xí)能力強(qiáng)的學(xué)生牽頭,帶動(dòng)團(tuán)隊(duì)成員完成學(xué)習(xí)和討論,最后將學(xué)生解決不了的問(wèn)題和疑問(wèn)提交給教師。

(2)問(wèn)題-理論-應(yīng)用歸納式教學(xué)法

概率統(tǒng)計(jì)是應(yīng)用上最活躍的數(shù)學(xué)分支之一,教學(xué)中要充分反映課程本身的特點(diǎn)。在課堂講授理論時(shí),先提出應(yīng)用案例,讓學(xué)生先了解實(shí)際背景,然后再給出理論上的解決方法,最后利用理論知識(shí)完成案例的求解。[5]如在講授概率計(jì)算時(shí),引入摸獎(jiǎng)游戲中獎(jiǎng)概率、抽簽公平性問(wèn)題和生日問(wèn)題;在講授統(tǒng)計(jì)推斷中假設(shè)檢驗(yàn)時(shí),先引入各種檢驗(yàn)問(wèn)題。目的就是引起學(xué)生的思考興趣,加深理論實(shí)際應(yīng)用的印象,同時(shí)理論講授時(shí)要注重思想方法的介紹,而不僅僅是結(jié)論。這種基于問(wèn)題的案例教學(xué)法要貫穿于理論教學(xué)的大部分。

3.考核方法改革

對(duì)于概率統(tǒng)計(jì)這樣的基礎(chǔ)課程,理論考核是必要的,但在總考核成績(jī)中所占比重可以縮小,從而增加實(shí)踐環(huán)節(jié)的考核??己朔绞桨綍r(shí)作業(yè)、實(shí)踐報(bào)告以及期末理論考試。其中平時(shí)作業(yè)比重可以在10%~15%,期末理論考試比重不超過(guò)60%,增加實(shí)踐報(bào)告。

實(shí)踐報(bào)告一般可以結(jié)合上述幾種工具軟件解決一些實(shí)際應(yīng)用,其中包含問(wèn)題背景、數(shù)據(jù)分析、結(jié)論,建議以小組方式完成。具體實(shí)施環(huán)節(jié),例如在講授常用離散型隨機(jī)變量分布時(shí),安排二項(xiàng)分布、超幾何分布和泊松分布結(jié)果比較實(shí)驗(yàn),通過(guò)利用Excel函數(shù)功能實(shí)現(xiàn);在講授數(shù)字特征時(shí),安排投資組合分析實(shí)驗(yàn),應(yīng)用Matlab或Excel實(shí)現(xiàn),講授假設(shè)檢驗(yàn)時(shí),安排SPSS實(shí)驗(yàn)。

總之,教學(xué)改革的發(fā)展對(duì)概率統(tǒng)計(jì)課程的教學(xué)提出了更高的要求,通過(guò)教學(xué)內(nèi)容、教學(xué)方法和考核方法的不斷探索和實(shí)踐,創(chuàng)新教學(xué)模式并付諸教學(xué)實(shí)踐是高等學(xué)校教師義不容辭的責(zé)任。同時(shí),新的教學(xué)模式更加突出了學(xué)生的主體地位,更強(qiáng)調(diào)學(xué)生的主觀能動(dòng)作用,因此新的教學(xué)模式的實(shí)施也對(duì)學(xué)生提出了更高的要求,更有利于培養(yǎng)學(xué)生的自學(xué)能力和解決實(shí)際問(wèn)題的能力,從而使學(xué)生在今后的學(xué)習(xí)和工作實(shí)踐中具備更強(qiáng)的競(jìng)爭(zhēng)能力。

[參考文獻(xiàn)]

[1]段玉.關(guān)于財(cái)經(jīng)類(lèi)專(zhuān)業(yè)《概率論與數(shù)理統(tǒng)計(jì)》課程體系改革探討[J].教師,2009(03).

[2]姚敏.關(guān)于大學(xué)概率統(tǒng)計(jì)課程教學(xué)改革的幾點(diǎn)思考[J].吉林省教育學(xué)院學(xué)報(bào),2011(08).

[3]周曉陽(yáng).數(shù)學(xué)實(shí)驗(yàn)與Matlab[M].武漢:華中科技大學(xué)出版社,2002.

第4篇:概率統(tǒng)計(jì)教學(xué)范文

【關(guān)鍵詞】 軍事院校;概率論與數(shù)理統(tǒng)計(jì);課堂教學(xué);改革對(duì)策

軍校學(xué)員是未來(lái)國(guó)防現(xiàn)代化建設(shè)的主力軍,學(xué)員質(zhì)量是關(guān)系我國(guó)軍事力量強(qiáng)弱的主要因素之一。[1]概率論與數(shù)理統(tǒng)計(jì)是“工業(yè)技術(shù)基礎(chǔ)”和“專(zhuān)業(yè)技術(shù)基礎(chǔ)”等模塊課程學(xué)習(xí)的先導(dǎo)課程,為后續(xù)課程的學(xué)習(xí)提供必需的知識(shí)基礎(chǔ)和數(shù)學(xué)工具,對(duì)提高學(xué)員的數(shù)學(xué)素養(yǎng),培養(yǎng)學(xué)員科學(xué)思維具有重要作用。然而,學(xué)員在學(xué)習(xí)本門(mén)課程中,出現(xiàn)了諸多問(wèn)題,如概念抽象、思維受限難以展開(kāi);內(nèi)容復(fù)雜,容易混淆,不易梳理;知其然而不知其所以然;無(wú)法用所學(xué)的數(shù)學(xué)知識(shí)和方法來(lái)解決實(shí)際問(wèn)題等。那么,如何提高概率統(tǒng)計(jì)課程教學(xué)質(zhì)量,增強(qiáng)學(xué)員對(duì)概率統(tǒng)計(jì)思想和方法的理解及應(yīng)用能力已成為教學(xué)中一個(gè)重要課題。針對(duì)當(dāng)前實(shí)際教學(xué)中出現(xiàn)的問(wèn)題,進(jìn)行深入的分析,結(jié)合教學(xué)實(shí)踐,本文將從四個(gè)方面分別進(jìn)行闡述。

一、案例式教學(xué),激發(fā)興趣、培養(yǎng)能力

《概率論與數(shù)理統(tǒng)計(jì)》這門(mén)課程與現(xiàn)實(shí)生活聯(lián)系較密切,具有從實(shí)際中來(lái)又服務(wù)于實(shí)際應(yīng)用性較強(qiáng)的特點(diǎn),因此,授課過(guò)程中加強(qiáng)案例教學(xué),選擇與現(xiàn)實(shí)背景相互聯(lián)系的學(xué)習(xí)材料,使理論教學(xué)和實(shí)際案例相結(jié)合,使課堂充滿生機(jī)和活力,從而激發(fā)學(xué)習(xí)興趣,增強(qiáng)學(xué)生解決實(shí)際問(wèn)題和綜合分析問(wèn)題的能力。如講課《古典概率》中的概率大小,可舉“股民買(mǎi)彩票 ”、打麻將時(shí)“擲骰子游戲”、同學(xué)過(guò)生日時(shí)出現(xiàn)的生日巧合現(xiàn)象等例子。講授全概率公式時(shí),可舉敏感性問(wèn)題(參加賭博的比率、經(jīng)營(yíng)者偷稅漏稅的比率、學(xué)生中考試作弊的比率等)調(diào)查的案例,從調(diào)查數(shù)據(jù)中通過(guò)全概率公式計(jì)算出所研究的比率問(wèn)題。講授貝葉斯公式時(shí),引入伊索寓言“孩子與狼”的故事,用貝葉斯公式來(lái)分析此寓言中村民對(duì)孩子的可信程度是如何下降的。針對(duì)獨(dú)立性的授課,引入諺語(yǔ)、俗語(yǔ),運(yùn)用事件獨(dú)立性來(lái)闡釋“三個(gè)臭皮匠,頂個(gè)諸葛亮”。[2]

二、更新教學(xué)手段,理論教學(xué)與實(shí)踐教學(xué)相結(jié)合

隨著計(jì)算機(jī)多媒體技術(shù)和網(wǎng)絡(luò)技術(shù)的發(fā)展,計(jì)算機(jī)輔助教學(xué)已逐漸成為現(xiàn)代化教學(xué)的標(biāo)志。[3]以計(jì)算機(jī)為主的現(xiàn)代教育技術(shù)的運(yùn)用,能將抽象的數(shù)學(xué)知識(shí)形象化、直觀化,提供給學(xué)生以親身經(jīng)歷數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過(guò)程的機(jī)會(huì),使課堂教學(xué)活潑化、生動(dòng)化。在課堂上積極、合理、有效的使用多媒體進(jìn)行授課,通過(guò)計(jì)算機(jī)圖形演示、動(dòng)畫(huà)模擬等以圖形并茂的形式表現(xiàn)出教學(xué)的動(dòng)態(tài)性,從根本上改變傳統(tǒng)單調(diào)的教學(xué)模式,激發(fā)學(xué)員的學(xué)習(xí)興趣,活躍學(xué)習(xí)氛圍,加深對(duì)所學(xué)內(nèi)容的感知度。例如在學(xué)習(xí)頻率的穩(wěn)定性時(shí),利用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù),設(shè)計(jì)虛擬試驗(yàn),模擬投幣試驗(yàn)并自動(dòng)統(tǒng)計(jì)正、反面次數(shù)。計(jì)算機(jī)在短時(shí)間內(nèi)完成大量重復(fù)試驗(yàn)并統(tǒng)計(jì),通過(guò)直觀、生動(dòng)的演示,把頻率穩(wěn)定于概率這一過(guò)程動(dòng)態(tài)地展現(xiàn)出來(lái),使學(xué)生對(duì)此過(guò)程一覽無(wú)遺,從而能深刻理解當(dāng)試驗(yàn)次數(shù)相當(dāng)試驗(yàn)次數(shù)增大時(shí),頻率逐漸穩(wěn)定于概率這一原理。對(duì)于作為理論基礎(chǔ)的大數(shù)定律和中心極限定理,學(xué)員在學(xué)習(xí)中往往不好理解,使用計(jì)算機(jī)實(shí)現(xiàn)對(duì)定理的模擬證明,增強(qiáng)學(xué)員對(duì)定理的直觀理解。

結(jié)合數(shù)學(xué)實(shí)驗(yàn),使用統(tǒng)計(jì)軟件包,解決實(shí)際案例。在學(xué)生獲取概率統(tǒng)計(jì)概念和方法推理的基礎(chǔ)上,引入統(tǒng)計(jì)實(shí)驗(yàn),把概率統(tǒng)計(jì)教學(xué)與統(tǒng)計(jì)實(shí)驗(yàn)有機(jī)地結(jié)合起來(lái),充分利用MATLAB,SPSS等數(shù)學(xué)專(zhuān)業(yè)軟件作一些諸如統(tǒng)計(jì)推斷、數(shù)據(jù)處理與模擬、圖像描繪、曲線擬合等方面的實(shí)驗(yàn)。通過(guò)統(tǒng)計(jì)試驗(yàn),培養(yǎng)學(xué)員解決實(shí)際問(wèn)題的能力,使學(xué)員主動(dòng)應(yīng)用概率統(tǒng)計(jì)概念和推理方法去觀察、分析、解決實(shí)際生活中的許多問(wèn)題,并掌握一種實(shí)用的技能。例如,在講授雙因素方差分析(無(wú)交互作用)時(shí), 先對(duì)模型進(jìn)行介紹, 然后進(jìn)行平方和分解,給出方差分析表的結(jié)構(gòu), 最后借助統(tǒng)計(jì)軟件spss, 教會(huì)學(xué)員如何將這些理論應(yīng)用到實(shí)際生活中去[4]。

三、發(fā)揮習(xí)題課的作用,知識(shí)梳理不拘一格

習(xí)題課上,對(duì)所學(xué)的基本定理、基本概念要重點(diǎn)強(qiáng)調(diào)它們的條件、應(yīng)用范圍及其相互關(guān)系,揭示各知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,突出重點(diǎn),構(gòu)建清晰的理論框架, 便于完成知識(shí)的“梳理”,幫助學(xué)生形成完整的知識(shí)體系。例如 針對(duì)一維隨機(jī)變量及其分布,二維隨機(jī)變量及其分布,其知識(shí)點(diǎn)多、公式多,不易梳理。若僅對(duì)知識(shí)點(diǎn)的簡(jiǎn)單匯總和羅列,必然使學(xué)員產(chǎn)生被動(dòng)的灌輸思想意識(shí)。為避免枯燥及其千遍一律,采用基于圖像化的比較法,構(gòu)建兩個(gè)生動(dòng)、形象的機(jī)器小人知識(shí)結(jié)構(gòu)圖(圖1-圖2所示),將單元所學(xué)內(nèi)容有機(jī)的組織起來(lái),分析各知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,不僅能對(duì)知識(shí)點(diǎn)進(jìn)行有效梳理,而且為學(xué)員的創(chuàng)造性思維提供發(fā)展舞臺(tái),既激發(fā)了學(xué)習(xí)熱情又鍛煉了想象力、培養(yǎng)了創(chuàng)造精神。同時(shí),鼓勵(lì)學(xué)員以自己的理解方式進(jìn)行多樣化的知識(shí)體系的建立,比如各式圖表:概念圖、原因結(jié)果圖、分類(lèi)層次圖、魚(yú)骨圖等,只有經(jīng)過(guò)自己思考并親自動(dòng)手實(shí)踐,才能形成系統(tǒng)、完整、印象深刻的知識(shí)鏈,從而深化、牢固掌握所學(xué)內(nèi)容。

圖1 一維隨機(jī)變量及其分布 圖2 二維隨機(jī)變量及其分布

四、注重概率統(tǒng)計(jì)思想的滲透和培養(yǎng)

概率統(tǒng)計(jì)思想是概率統(tǒng)計(jì)的靈魂,也是學(xué)好這門(mén)課的重要武器,它是知識(shí)轉(zhuǎn)化為能力的橋梁,是培養(yǎng)學(xué)生的數(shù)學(xué)觀念、形成良好思維素質(zhì)的關(guān)鍵。[5]因此,在教學(xué)過(guò)程中,要特別注重?cái)?shù)學(xué)思想方法的滲透,注意挖掘和概括藏于知識(shí)背后的思想方法。例如,數(shù)理統(tǒng)計(jì)中的極大似然估計(jì)法的統(tǒng)計(jì)思想,從學(xué)員熟知的問(wèn)題出發(fā),舉例如下:飛將軍李廣一日無(wú)事,與一副將外出狩獵。忽聞雁叫聲聲,兩人同時(shí)彎弓射雁, 應(yīng)聲而落。副將縱馬視之, 雁唯中一箭,惑之:吾中乎?將中乎?更愿意認(rèn)為是飛將軍射中,那么為什么會(huì)有這種觀點(diǎn)呢?通過(guò)此例的分析,對(duì)于一些不確定性事件,在一 次試驗(yàn)中,更愿意相信概率最大的事件會(huì)發(fā)生,由此很自然的體會(huì)到極大似然估計(jì)的最樸素的思想。例如假設(shè)檢驗(yàn)中的統(tǒng)計(jì)推斷思想,假設(shè)檢驗(yàn)問(wèn)題的解法便是統(tǒng)計(jì)推斷思想的體現(xiàn),是帶有概率性質(zhì)的一種推理方法,其依據(jù)是“小概率事件原則”。如對(duì)于某個(gè)假設(shè)(參數(shù)假設(shè)或非參數(shù)假設(shè)),給定一小概率水平標(biāo)準(zhǔn),通過(guò)對(duì)抽樣數(shù)據(jù)進(jìn)行整理、計(jì)算,如果結(jié)果使得一小概率事件發(fā)生了(這與小概率事件原則矛盾),做出拒絕接受原假設(shè)的推斷;否則,認(rèn)為原假設(shè)是相容的(可接受)。授課中要注意其與數(shù)學(xué)中的邏輯推理的不同。參數(shù)的區(qū)間估計(jì)、方差分析、回歸分析等方法也體現(xiàn)了統(tǒng)計(jì)推斷思想。

五、結(jié)束語(yǔ)

實(shí)踐表明,以上四個(gè)方面對(duì)課程教學(xué)的優(yōu)化探索,可以激發(fā)學(xué)員的學(xué)習(xí)興趣,提高學(xué)習(xí)效率,增強(qiáng)實(shí)踐能力。然而還存在有待完善的環(huán)節(jié),例如考試評(píng)價(jià)的單一化,考核制度的改革??傊挥性诮虒W(xué)的過(guò)程中不斷地總結(jié)經(jīng)驗(yàn),調(diào)整教學(xué)方法和教學(xué)手段,以提高教學(xué)效果與教學(xué)質(zhì)量。

【參考文獻(xiàn)】

[1] 蘇學(xué)軍,邢紅宏.軍隊(duì)院校開(kāi)放型基礎(chǔ)實(shí)驗(yàn)教學(xué)模式的探索與實(shí)踐[J].實(shí)驗(yàn)技術(shù)與管理,2008(8)129-131.

[2] 曹宏舉,曹或涵.諺語(yǔ)背后的概率問(wèn)題[J].大學(xué)數(shù)學(xué),2012(1)199-201.

[3] 付巧峰.概率論與數(shù)理統(tǒng)計(jì)課程教學(xué)的探討[J].技術(shù)與創(chuàng)新管理,2012(4)425-427.

[4] 顧光同,張香云,徐光輝.統(tǒng)計(jì)實(shí)驗(yàn)寓于概率統(tǒng)計(jì)教學(xué)的探索與實(shí)踐[J].統(tǒng)計(jì)與決策,2007(21)165-167.

[5] 魏孝章,姜根明,概率統(tǒng)計(jì)中的數(shù)學(xué)思想[J].陜西教育學(xué)院學(xué)報(bào),2003(1)67-69.

第5篇:概率統(tǒng)計(jì)教學(xué)范文

一、基本概念

1.描述統(tǒng)計(jì)。

通過(guò)調(diào)查、試驗(yàn)獲得大量數(shù)據(jù),用歸組、制表、繪圖等統(tǒng)計(jì)方法對(duì)其進(jìn)行歸納、整理,以直觀形象的形式反映其分布特征的方法,如:小學(xué)數(shù)學(xué)中的制表、條形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖等都是描述統(tǒng)計(jì)。另外計(jì)算集中量所反映的一組數(shù)據(jù)的集中趨勢(shì),如算術(shù)平均數(shù)、中位數(shù)、總數(shù)、加權(quán)算術(shù)平均數(shù)等,也屬于描述統(tǒng)計(jì)的范圍。其目的是將大量零散的、雜亂無(wú)序的數(shù)字資料進(jìn)行整理、歸納、簡(jiǎn)縮、概括,使事物的全貌及其分布特征清晰、明確地顯現(xiàn)出來(lái)。

2.概率的統(tǒng)計(jì)定義。

人們?cè)趻仈S一枚硬幣時(shí),究竟會(huì)出現(xiàn)什么樣的結(jié)果事先是不能確定的,但是當(dāng)我們?cè)谙嗤臈l件下,大量重復(fù)地拋擲同一枚均勻硬幣時(shí),就會(huì)發(fā)現(xiàn)“出現(xiàn)正面”或“出現(xiàn)反面”的次數(shù)大約各占總拋擲次數(shù)的:左右。這里的“大量重復(fù)”是指多少次呢?歷史上不少統(tǒng)計(jì)學(xué)家,例如皮爾遜等人作過(guò)成千上萬(wàn)次拋擲硬幣的試驗(yàn),其試驗(yàn)記錄如下:

可以看出,隨著試驗(yàn)次數(shù)的增加,出現(xiàn)正面的頻率波動(dòng)越來(lái)越小,頻率在0.5這個(gè)定值附近擺動(dòng)的性質(zhì)是出現(xiàn)正面這一現(xiàn)象的內(nèi)在必然性規(guī)律的表現(xiàn),0.5恰恰就是刻畫(huà)出現(xiàn)正面可能性大小的數(shù)值,0.5就是拋擲硬幣時(shí)出現(xiàn)正面的概率。這就是概率統(tǒng)計(jì)定義的思想,這一思想也給出了在實(shí)際問(wèn)題中估算概率的近似值的方法,當(dāng)試驗(yàn)次數(shù)足夠大時(shí),可將頻率作為概率的近似值。

例如100粒種子平均來(lái)說(shuō)大約有90粒種子發(fā)芽,則我們說(shuō)種子的發(fā)芽率為90%;

某類(lèi)產(chǎn)品平均每1000件產(chǎn)品中大約有10件廢品,則我們說(shuō)該產(chǎn)品的廢品率為1%。在小學(xué)數(shù)學(xué)中用概率的統(tǒng)計(jì)定義,一般求得的是概率的近似值,特別是次數(shù)不夠大時(shí),這個(gè)概率的近似值存在著一定的誤差。例如:某地區(qū)30年來(lái)的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬(wàn)里,問(wèn)下一年的10月6日是晴天的概率是多少?

因?yàn)榍?0年出現(xiàn)晴天的頻率為0.83,所以概率大約是0.83。

3.概率的古典定義。

對(duì)某一類(lèi)特殊的試驗(yàn),還可以從另一個(gè)角度求它的概率。拋擲一枚硬幣時(shí),試驗(yàn)的結(jié)果有2種:出現(xiàn)正面、出現(xiàn)反面;由于硬幣是均勻的,通過(guò)直觀分析可以看出出現(xiàn)正面和反面的可能性相同,都是。進(jìn)一步研究:

某試驗(yàn)具有以下性質(zhì)

(1)試驗(yàn)的結(jié)果是有限個(gè)(n個(gè))

(2)每個(gè)結(jié)果出現(xiàn)的可能性是相同的 (硬幣、骰子是均勻的,拋擲時(shí)出現(xiàn)每一面的可能性都相同)

如果事件A是由上述n個(gè)結(jié)果中的m個(gè)組成,則稱(chēng)事件A發(fā)生的概率為m/n。

例:擲一顆均勻的骰子,求出現(xiàn)2點(diǎn)的概率。

由于這個(gè)試驗(yàn)滿足概率的古典定義的兩個(gè)條件,且n=6,m=1,出現(xiàn)2點(diǎn)的概率是。

又:求出現(xiàn)偶數(shù)點(diǎn)的概率?出現(xiàn)偶數(shù)點(diǎn)這一事件包含3個(gè)結(jié)果,2點(diǎn)、 4點(diǎn)、6點(diǎn)。m=3

出現(xiàn)偶數(shù)點(diǎn)的概率是,即。

概率的古典定義不用大量地去試驗(yàn),只要試驗(yàn)的結(jié)果為等可能的有限個(gè)的情況,通過(guò)分析找出m、n,其概率就可以求出了,其優(yōu)點(diǎn)是便于計(jì)算,但概率的古典定義不如概率的統(tǒng)計(jì)定義適用面廣,如拋擲一個(gè)酒瓶蓋子時(shí),就不滿足出現(xiàn)每一面的可能性都相同的條件,因此出現(xiàn)正面的概率就不能用概率的古典定義去求,而要用統(tǒng)計(jì)定義去近似地求它的概率。

在小學(xué)數(shù)學(xué)的教學(xué)中,根據(jù)小學(xué)生的認(rèn)知水平,應(yīng)避免學(xué)習(xí)過(guò)多或艱深的術(shù)語(yǔ),從小學(xué)低年級(jí)開(kāi)始應(yīng)該非形式地介紹概率思想,而非嚴(yán)格的定義、單純的計(jì)算,因此,在小學(xué)經(jīng)常用“可能性”來(lái)代替“概率”這個(gè)概念。但作為教師應(yīng)該懂得它的意義,否則就會(huì)出笑話。有的教師讓學(xué)生在課上做 20次拋擲硬幣的試驗(yàn),希望學(xué)生能得到出現(xiàn)正面的可能性是,因?yàn)閽仈S的次數(shù)少,所以要得出10次正面,是很難做到的,概率的統(tǒng)計(jì)定義一般得出的是概率的近似值。

二、在學(xué)習(xí)統(tǒng)計(jì)與概率的過(guò)程中發(fā)展學(xué)生的能力

統(tǒng)計(jì)的內(nèi)容是用數(shù)字描述和解釋我們周?chē)氖澜?,?yīng)結(jié)合學(xué)生生活的實(shí)際,如:可以

設(shè)計(jì)成一個(gè)活動(dòng),使學(xué)生主動(dòng)地投入其中;提出關(guān)鍵的問(wèn)題;搜集和整理數(shù)據(jù);應(yīng)用圖表來(lái)表示數(shù)據(jù);分析數(shù)據(jù);作出推測(cè),并用一種別人信服的方式交流信息。同時(shí)體會(huì)對(duì)數(shù)據(jù)的收集、處理會(huì)獲得某些新的信息。

例如:組織一次班會(huì)活動(dòng),目的是增進(jìn)同學(xué)之間的互相了解和交流。首先讓學(xué)生們自己選題,希望了解哪些信息:“同學(xué)們每天怎么來(lái)上學(xué)?”;“每個(gè)月都有多少同學(xué)過(guò)生日?”;“同學(xué)們喜歡讀哪類(lèi)圖書(shū)?”;“同學(xué)們的愛(ài)好是什么?”;“我們最喜愛(ài)的運(yùn)動(dòng)”;“我們最喜愛(ài)的動(dòng)物”…然后學(xué)生們分組去調(diào)查收集數(shù)據(jù),用表格歸納整理,并且制成各種統(tǒng)計(jì)圖:如:

從統(tǒng)計(jì)圖可以知道,喜歡動(dòng)物故事的同學(xué)最多,根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果,班里可以組織一個(gè)動(dòng)物研究會(huì),辦一個(gè)動(dòng)物圖片展覽,到野生動(dòng)物園去參觀等。全班同學(xué)還可以把各種圖表制成墻報(bào)、手抄報(bào)把自己的班級(jí)介紹給全校其他同學(xué)等。

三、統(tǒng)計(jì)、概率與小學(xué)其它內(nèi)容的聯(lián)系

例1

上面各圖中表示黑色區(qū)域的分?jǐn)?shù)分別為;;;,小學(xué)生即使沒(méi)有學(xué)習(xí)幾何圖形的概念也可以通過(guò)分?jǐn)?shù)的意義知道2號(hào)黑色區(qū)域最容易投中,因?yàn)楦鶕?jù)分?jǐn)?shù)的意義它占總面積的比最大,為。

例2

從紅球所占的比例來(lái)看,1號(hào)袋為; 2號(hào)袋為;3號(hào)袋為擊,因此相比之下,1號(hào)袋最容易抽出紅球。

例3下面是用扇形統(tǒng)計(jì)圖統(tǒng)計(jì)的資料

對(duì)小學(xué)生來(lái)講,扇形統(tǒng)計(jì)圖的難點(diǎn)在于不同的圓心角所代表的部分的百分?jǐn)?shù)表示及百分?jǐn)?shù)表示的圓心角的度數(shù),而對(duì)于—上面圖中有特殊圓心角時(shí),可避開(kāi)圓心角,用分?jǐn)?shù)、百分?jǐn)?shù)的意義得出喜歡英語(yǔ)課的,科學(xué)課的,數(shù)學(xué)課的;參加球類(lèi)興趣小組的有50%;參加樂(lè)隊(duì)的18%。

從上面的例子可以看出,統(tǒng)計(jì)與概率可以為發(fā)展和運(yùn)用比、分?jǐn)?shù)、百分?jǐn)?shù)和小數(shù)這些概念提供背景。因此我們可以用建構(gòu)的方式,建立這部分內(nèi)容與小學(xué)其它知識(shí)的聯(lián)系和建構(gòu)有意義的認(rèn)知結(jié)構(gòu),從而更深入、更靈活地學(xué)習(xí)。

第6篇:概率統(tǒng)計(jì)教學(xué)范文

【關(guān)鍵詞】教育價(jià)值;改革意義;培養(yǎng)統(tǒng)計(jì)觀念;提高數(shù)學(xué)素養(yǎng)

隨著信息技術(shù)的發(fā)展,人們常常需要收集大量的數(shù)據(jù),根據(jù)所獲得的數(shù)據(jù)提取有價(jià)值的信息,做出合理的決策。統(tǒng)計(jì)是研究如何合理收集、整理、分析數(shù)據(jù)的學(xué)科,它可以為人們制定決策提供依據(jù)。概率是研究隨機(jī)現(xiàn)象規(guī)律的學(xué)科,它為人們認(rèn)識(shí)客觀世界提供了重要的思維模式和解決問(wèn)題的方法,同時(shí)為統(tǒng)計(jì)學(xué)的發(fā)展提供了理論基礎(chǔ)。具有統(tǒng)計(jì)與概率的基本知識(shí)已成為每個(gè)現(xiàn)代公民必備的基本素質(zhì)。

一、統(tǒng)計(jì)與概率的教育價(jià)值

社會(huì)上的各行各業(yè)都離不開(kāi)統(tǒng)計(jì)學(xué)。生物學(xué)上有生物統(tǒng)計(jì)學(xué),分析生物學(xué)中的統(tǒng)計(jì)規(guī)律性;經(jīng)濟(jì)學(xué)上有數(shù)量經(jīng)濟(jì)學(xué),分析市場(chǎng)的發(fā)展趨勢(shì);就連律師為了提供有力的證據(jù)也離不開(kāi)統(tǒng)計(jì)學(xué);在醫(yī)學(xué)上,為了評(píng)估有爭(zhēng)議的醫(yī)學(xué)報(bào)告,也常常少不了利用統(tǒng)計(jì)學(xué)進(jìn)行分析與認(rèn)證;一些新興研究領(lǐng)域也離不開(kāi)統(tǒng)計(jì)與概率,比如對(duì)策論、風(fēng)險(xiǎn)投資、隨機(jī)模擬技術(shù)等。因?yàn)槔媒y(tǒng)計(jì)與概率和思想方法進(jìn)行有效的分類(lèi)、整理與分析數(shù)據(jù),可以保證結(jié)論的可靠性。

高中課程及時(shí)強(qiáng)化統(tǒng)計(jì)與概率的內(nèi)容已成必然。它已成為培養(yǎng)學(xué)生以隨機(jī)的觀點(diǎn)來(lái)理解世界的教學(xué)內(nèi)容,使學(xué)生具有一些基本的統(tǒng)計(jì)與概率的觀念、知識(shí)和方法,在面對(duì)不確定情境或大量數(shù)據(jù)時(shí),能做出合理的決策,具有重要的教育價(jià)值。

二、統(tǒng)計(jì)與概率對(duì)數(shù)學(xué)教育改革的意義

1.使高中數(shù)學(xué)內(nèi)容、結(jié)構(gòu)更加合理化

高中數(shù)學(xué)內(nèi)容中的代數(shù)、幾何屬于“確定性”數(shù)學(xué),學(xué)習(xí)時(shí)主要依賴(lài)邏輯思維和演繹的方法,它們?cè)谂囵B(yǎng)學(xué)生的計(jì)算能力、邏輯思維能力和空間想象能力方面發(fā)揮著重要作用。而統(tǒng)計(jì)與概率屬于“不確定性”數(shù)學(xué),需尋找隨機(jī)性中的規(guī)律性,學(xué)習(xí)時(shí)主要依靠辨證思維和歸納的方法,它在培養(yǎng)學(xué)生的實(shí)踐能力和合作精神等方面更直接、更有效。統(tǒng)計(jì)概率與現(xiàn)實(shí)生活聯(lián)系密切,學(xué)生可以通過(guò)實(shí)踐活動(dòng)來(lái)學(xué)習(xí)數(shù)據(jù)處理的方法,學(xué)生可以更容易地建立數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,體驗(yàn)到數(shù)學(xué)在解決實(shí)際問(wèn)題中的威力,這對(duì)調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生調(diào)查研究的習(xí)慣,實(shí)事求是的態(tài)度,合作交流以及綜合實(shí)踐能力都有很大的作用。

2.使高中數(shù)學(xué)課堂教學(xué)更加現(xiàn)代化

概率與統(tǒng)計(jì)是研究隨機(jī)現(xiàn)象統(tǒng)計(jì)規(guī)律性的一門(mén)學(xué)科,而要想獲得隨機(jī)現(xiàn)象的統(tǒng)計(jì)規(guī)律性,就必須進(jìn)行大量重復(fù)實(shí)驗(yàn),如果離開(kāi)計(jì)算機(jī)的幫助,統(tǒng)計(jì)實(shí)驗(yàn)結(jié)果的困難是可想而知的。統(tǒng)計(jì)與概率內(nèi)容中涉及大量復(fù)雜數(shù)據(jù)的計(jì)算、分析、整理,在適當(dāng)?shù)慕虒W(xué)內(nèi)容中,實(shí)現(xiàn)信息技術(shù)與數(shù)學(xué)課程內(nèi)容的有機(jī)整合,能使學(xué)生更好地理解數(shù)學(xué)本質(zhì),主動(dòng)地探索和研究數(shù)學(xué)。計(jì)算器與計(jì)算機(jī)的使用可以大大提高數(shù)據(jù)整理和顯示的效果,在建立記錄和研究信息方面,為學(xué)生提供了一個(gè)良好的工具。通過(guò)計(jì)算機(jī)網(wǎng)絡(luò)收集數(shù)據(jù),利用計(jì)算機(jī)軟件繪制統(tǒng)計(jì)圖表及進(jìn)行模擬實(shí)驗(yàn)等,這些都為豐富統(tǒng)計(jì)與概率提供了大量資源。

3.使高中數(shù)學(xué)課堂教學(xué)模式更加多樣化

學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不應(yīng)只限于對(duì)概念、結(jié)論和技能的記憶、模仿和接受,獨(dú)立思考、自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué)等都是學(xué)習(xí)數(shù)學(xué)的重要方式。統(tǒng)計(jì)與概率這一領(lǐng)域的內(nèi)容對(duì)學(xué)生來(lái)說(shuō)是充滿趣味和吸引力的,動(dòng)手收集與呈現(xiàn)數(shù)據(jù)是一個(gè)活動(dòng)性很強(qiáng)且充滿挑戰(zhàn)和樂(lè)趣的過(guò)程,讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明,發(fā)展合情推理和初步的演繹推理能力,能有條理、清晰地闡述自己的觀點(diǎn)。正因?yàn)榻y(tǒng)計(jì)與概率教學(xué)中的大量活動(dòng),豐富了數(shù)學(xué)課堂教學(xué)的模式,促進(jìn)教師教學(xué)方法的改進(jìn)和學(xué)生學(xué)習(xí)方式的改變。

三、統(tǒng)計(jì)與概率的教學(xué)建議

統(tǒng)計(jì)與概率所研究的對(duì)象具有抽象和不確定性等特點(diǎn),學(xué)生很難用已獲得的解決確定性數(shù)學(xué)問(wèn)題的思維方法,去求得“活” 的概率問(wèn)題的解,這就決定了統(tǒng)計(jì)與概率教學(xué)中教師必須引導(dǎo)學(xué)生經(jīng)歷概率模型的構(gòu)建過(guò)程和模型的應(yīng)用過(guò)程,從中獲得問(wèn)題情境的情境體驗(yàn)和感悟,才能迎對(duì)“活”的概率問(wèn)題,實(shí)現(xiàn)統(tǒng)計(jì)與概率在提高學(xué)生數(shù)學(xué)素養(yǎng)方面的功能。為此,我們必須做到:

1.強(qiáng)調(diào)統(tǒng)計(jì)與概率的現(xiàn)實(shí)意義,培養(yǎng)和加強(qiáng)學(xué)生的統(tǒng)計(jì)觀念

教學(xué)中除了讓學(xué)生學(xué)習(xí)一些最基本的統(tǒng)計(jì)分析的方法外,更重要的是要讓學(xué)生經(jīng)歷數(shù)據(jù)統(tǒng)計(jì)的全過(guò)程,體會(huì)統(tǒng)計(jì)思維與確定性思維的差異,運(yùn)用統(tǒng)計(jì)與概率的知識(shí)與方法進(jìn)行推理,做出合理的決策,并進(jìn)行交流。應(yīng)著重于對(duì)現(xiàn)實(shí)問(wèn)題的探索,引導(dǎo)學(xué)生通過(guò)對(duì)各種案例的分析,使學(xué)生認(rèn)識(shí)到統(tǒng)計(jì)與概率的廣泛應(yīng)用以及對(duì)制定決策的重要作用。教師應(yīng)當(dāng)根據(jù)學(xué)生的自身特點(diǎn)提供豐富的、反映統(tǒng)計(jì)與概率思想方法的探索素材,引導(dǎo)他們把對(duì)統(tǒng)計(jì)與概率的探索從日常生活發(fā)展到現(xiàn)實(shí)社會(huì)和科學(xué)技術(shù)中感興趣的領(lǐng)域。

2.強(qiáng)調(diào)統(tǒng)計(jì)的過(guò)程,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和能力

在教學(xué)概率與統(tǒng)計(jì)知識(shí)時(shí),因與實(shí)際生活聯(lián)系很密切,通過(guò)開(kāi)展數(shù)學(xué)實(shí)驗(yàn)課,豐富的實(shí)例引入鼓勵(lì)學(xué)生動(dòng)手操作和主動(dòng)參與,讓他們?cè)趯?shí)驗(yàn)、觀察、交流等活動(dòng)中體會(huì)和理解隨機(jī)事件發(fā)生的不確定性及其頻率的穩(wěn)定性等相關(guān)內(nèi)容,學(xué)生動(dòng)手操作、主動(dòng)參與、統(tǒng)計(jì)實(shí)驗(yàn),不但能激發(fā)學(xué)生學(xué)習(xí)概率統(tǒng)計(jì)的興趣,而且在反復(fù)的統(tǒng)計(jì)實(shí)驗(yàn)中可以更好地體會(huì)和理解統(tǒng)計(jì)思想。如在教學(xué)概率的統(tǒng)計(jì)定義中,可以讓學(xué)生動(dòng)手實(shí)驗(yàn),擲硬幣的實(shí)驗(yàn)與邊框中有放回的摸球?qū)嶒?yàn);等可能事件概率中,通過(guò)研究游戲規(guī)則的公平性加深對(duì)等可能性的理解,大大提高了實(shí)踐教學(xué)的效果。還可選擇適合學(xué)生研究的實(shí)際問(wèn)題作為研究性課題來(lái)開(kāi)展,以提高學(xué)生的自主學(xué)習(xí)能力、創(chuàng)造性思維能力和實(shí)踐能力。

3.恰當(dāng)運(yùn)用現(xiàn)代信息技術(shù),培養(yǎng)學(xué)生的趣味

在概率統(tǒng)計(jì)的教學(xué)中,應(yīng)鼓勵(lì)學(xué)生盡可能使用科學(xué)型計(jì)算器、計(jì)算機(jī)及軟件、互聯(lián)網(wǎng),以及各種數(shù)學(xué)教育技術(shù)平臺(tái)。使學(xué)生有時(shí)間與精力來(lái)探究事物的統(tǒng)計(jì)規(guī)律性,對(duì)實(shí)驗(yàn)結(jié)果的隨機(jī)性和規(guī)律性有更深刻的認(rèn)識(shí),更好地體會(huì)統(tǒng)計(jì)思想和概率的意義。例如:教師可以在網(wǎng)絡(luò)上收集某運(yùn)動(dòng)員在本賽季的成績(jī)、得分、籃板、犯規(guī)、搶斷等數(shù)據(jù),做成超文本文件,放在服務(wù)器中,讓學(xué)生通過(guò)瀏覽這些資料,找出自己的研究主題,通過(guò)計(jì)算平均值、方差、畫(huà)頻率分布表等,寫(xiě)出相應(yīng)的評(píng)價(jià)報(bào)告。

4.注重概率統(tǒng)計(jì)與其它數(shù)學(xué)知識(shí)的聯(lián)系,提高學(xué)生對(duì)數(shù)學(xué)整體的認(rèn)識(shí)

高中數(shù)學(xué)課程是以模塊和專(zhuān)題的形式呈現(xiàn)的。因此,教學(xué)中應(yīng)使學(xué)生體會(huì)知識(shí)之間的有機(jī)聯(lián)系,感受數(shù)學(xué)的整體性,進(jìn)一步理解數(shù)學(xué)的本質(zhì),提高解決問(wèn)題的能力。如在近幾年高考題中,就設(shè)計(jì)了許多與我們?nèi)粘I罘浅YN近的統(tǒng)計(jì)概率綜合題,較好的挖掘了傳統(tǒng)內(nèi)容與新增內(nèi)容的內(nèi)在聯(lián)系,體現(xiàn)了其它高中數(shù)學(xué)知識(shí)與概率統(tǒng)計(jì)知識(shí)非常貼切的自然交匯。這對(duì)學(xué)生學(xué)好概率統(tǒng)計(jì)知識(shí)與提高學(xué)生應(yīng)用意識(shí)和創(chuàng)新能力,優(yōu)化學(xué)生的思維均有著很好的導(dǎo)向作用。此外,還要注意數(shù)學(xué)與其他學(xué)科及現(xiàn)實(shí)世界的聯(lián)系。

參考文獻(xiàn):

第7篇:概率統(tǒng)計(jì)教學(xué)范文

關(guān)鍵詞: 概率論與數(shù)理統(tǒng)計(jì) 分級(jí)教學(xué) 實(shí)踐 問(wèn)題

高等院校經(jīng)過(guò)近幾年連續(xù)擴(kuò)招,正面臨著學(xué)生規(guī)模大幅膨脹、學(xué)生能力參差不齊的客觀現(xiàn)象。這些變化給基礎(chǔ)類(lèi)教學(xué)帶來(lái)了嚴(yán)峻的挑戰(zhàn),為了全面貫徹黨的教育方針,大力推進(jìn)素質(zhì)教育,對(duì)概率論與數(shù)理統(tǒng)計(jì)進(jìn)行科學(xué)的教學(xué)改革十分必要。

長(zhǎng)江大學(xué)作為湖北省最大的省屬地方高校,本身情況特殊,學(xué)生間存在著巨大差異:第一,我校石油工程、地球物理勘探和石油地質(zhì)三個(gè)專(zhuān)業(yè)按照國(guó)家一本線招生,其它專(zhuān)業(yè)則按照二本線招生;第二,畢業(yè)后職業(yè)目標(biāo)及就業(yè)要求差異較大,一部分進(jìn)入石油石化行業(yè),另外絕大部分會(huì)從事實(shí)際應(yīng)用型工作;第三,我校辦校和科研水平穩(wěn)步提升,對(duì)部分“精英”學(xué)生要求更高。之前我校該課程一直按照傳統(tǒng)的對(duì)所有學(xué)生實(shí)行自然分班和“一刀切”教學(xué)模式,這種單一、統(tǒng)一的教學(xué)模式,必然造成“好的學(xué)生吃不飽”、“差的學(xué)生吃不了”等新問(wèn)題。

1.分級(jí)教學(xué)的理論依據(jù)和目的

實(shí)施分級(jí)教學(xué),將高等數(shù)學(xué)處于同一或相近水平的學(xué)生跨專(zhuān)業(yè)跨班級(jí)歸在同一個(gè)班級(jí)進(jìn)行教學(xué),極大優(yōu)化教學(xué)資源,這主要源自因材施教原則。在因材施教教學(xué)原則下,分層次教學(xué)可滿足各層次學(xué)生數(shù)學(xué)素質(zhì)的要求,可充分挖掘?qū)W生的潛能,使每個(gè)學(xué)生都能獲得所需要的知識(shí),同時(shí)又充分實(shí)現(xiàn)高等院校的教育和服務(wù)功能,保證教學(xué)的質(zhì)量和效果。

2.概率論與數(shù)理統(tǒng)計(jì)課程分級(jí)教學(xué)的實(shí)踐

2.1分級(jí)教學(xué)的必要性。

2.1.1個(gè)體差異理論與生源質(zhì)量差異

由于學(xué)生在地域因素、學(xué)習(xí)方法、接受教學(xué)信息等方面存在明顯的個(gè)體差異,因此教師必須照顧學(xué)生的個(gè)體差異,從實(shí)際出發(fā)因材施教。擴(kuò)招后學(xué)生高考成績(jī)相差懸殊的現(xiàn)象已經(jīng)非常明顯,經(jīng)過(guò)一年的學(xué)習(xí),學(xué)生差異有擴(kuò)大的趨勢(shì)。該課程作為高等數(shù)學(xué)的后續(xù)課程,如果仍然采用自然分班,勢(shì)必會(huì)嚴(yán)重影響教學(xué)效果,還會(huì)導(dǎo)致有限的教學(xué)資源不能得到有效的利用。

2.1.2各個(gè)專(zhuān)業(yè)間的要求差異

各個(gè)專(zhuān)業(yè)對(duì)于概率論與數(shù)理統(tǒng)計(jì)的要求也不盡相同。我校物理、機(jī)械、電信等專(zhuān)業(yè)后續(xù)課程和專(zhuān)業(yè)研究與數(shù)理統(tǒng)計(jì)知識(shí)聯(lián)系緊密,對(duì)學(xué)生的能力要求也比較高;而法學(xué)、英語(yǔ)等專(zhuān)業(yè)只需要其掌握一般的數(shù)學(xué)基礎(chǔ)知識(shí)和概念。完全不顧專(zhuān)業(yè)差異,采用同樣的教學(xué)形式與教學(xué)方法,顯然是違背科學(xué)規(guī)律的。

2.2分級(jí)教學(xué)的實(shí)施。

2.2.1學(xué)生的分級(jí)原則

學(xué)生分級(jí)是進(jìn)行分級(jí)教學(xué)的前提,必須遵循一定的原則規(guī)律,科學(xué)合理地分班分級(jí)。劃分標(biāo)準(zhǔn)應(yīng)主要包括學(xué)生高等數(shù)學(xué)成績(jī)、專(zhuān)業(yè)性質(zhì)和本人意愿。分班分級(jí)應(yīng)首先考慮學(xué)生的高考入學(xué)成績(jī)和高等數(shù)學(xué)成績(jī),同時(shí)兼顧各專(zhuān)業(yè)后續(xù)課程及專(zhuān)業(yè)研究對(duì)概率論與數(shù)理統(tǒng)計(jì)知識(shí)能力的要求。在以上大原則的背景下,還應(yīng)尊重學(xué)生的自我選擇。當(dāng)然,現(xiàn)實(shí)分級(jí)時(shí),要考慮的因素還有很多,可以暫時(shí)分為ABC三級(jí):數(shù)學(xué)基礎(chǔ)好、專(zhuān)業(yè)對(duì)概率論知識(shí)要求較高的同學(xué)分為A級(jí);數(shù)學(xué)基礎(chǔ)較差且專(zhuān)業(yè)與數(shù)學(xué)聯(lián)系不太緊密的同學(xué)分為C級(jí);其他同學(xué)分為B級(jí)。

2.2.2教學(xué)的分級(jí)原則

教學(xué)分級(jí)的實(shí)施過(guò)程比較復(fù)雜,需要重新分級(jí)的教學(xué)環(huán)節(jié)很多,本文主要探討教學(xué)大綱、教學(xué)目標(biāo)、教學(xué)內(nèi)容和考核方法。針對(duì)不同情況,我們重新修訂了教學(xué)大綱和教學(xué)計(jì)劃,并安排了適當(dāng)?shù)慕虒W(xué)進(jìn)度。具體來(lái)說(shuō),A級(jí)主要是在掌握“三基”的基礎(chǔ)上,適當(dāng)加深教學(xué)內(nèi)容,學(xué)習(xí)并運(yùn)用統(tǒng)計(jì)軟件SPSS或SAS來(lái)解決實(shí)際問(wèn)題;B級(jí)學(xué)生著重于理解,依據(jù)教學(xué)大綱的要求,強(qiáng)調(diào)對(duì)基礎(chǔ)知識(shí)的理解與掌握,以課本知識(shí)為主,適當(dāng)補(bǔ)充習(xí)題,培養(yǎng)學(xué)生通過(guò)建模思想來(lái)解決問(wèn)題;C級(jí)學(xué)生則側(cè)重于一般理解掌握,在不影響課程體系完整性的基礎(chǔ)上,適當(dāng)降低概率論部分的理論性和難度,在教學(xué)中多介紹一些有著良好應(yīng)用背景的簡(jiǎn)單例子,力求做到深入淺出、通俗易懂??己朔绞降姆旨?jí)主要體現(xiàn)在平時(shí)成績(jī)的給定上。平時(shí)成績(jī)包括學(xué)生學(xué)習(xí)態(tài)度、作業(yè)完成和出勤情況等多方面,如果條件允許,A級(jí)學(xué)生也可采用課程論文加期末考試加平時(shí)成績(jī)的做法,并且ABC三級(jí)的平時(shí)成績(jī)可按總成績(jī)的20%、30%、40%的比例給出。

3.分級(jí)教學(xué)中存在的問(wèn)題

目前各高等院校概率論與數(shù)理統(tǒng)計(jì)分級(jí)教學(xué)仍處于嘗試和探索階段,沒(méi)有現(xiàn)成的道路可循,為此要構(gòu)建合理的分級(jí)教學(xué)模式,必須注意以下幾個(gè)方面的問(wèn)題。

3.1如何制定更加科學(xué)的分級(jí)教學(xué)計(jì)劃。

制定科學(xué)合理的教學(xué)計(jì)劃和教學(xué)內(nèi)容,實(shí)行有效的教學(xué)方法是分級(jí)教學(xué)重中之重。如何在充分體現(xiàn)國(guó)家學(xué)大綱精神的基礎(chǔ)上,根據(jù)學(xué)生及專(zhuān)業(yè)的具體情況,制定合理規(guī)范的教學(xué)計(jì)劃和教學(xué)內(nèi)容是分級(jí)教學(xué)改革探索中面臨的首要問(wèn)題。

3.2如何使得教務(wù)、學(xué)生管理更好地協(xié)調(diào)一致。

分級(jí)教學(xué)打破了原有的自然班級(jí)界限,給教務(wù)、學(xué)生管理帶來(lái)了一系列問(wèn)題。班級(jí)同學(xué)來(lái)自不同專(zhuān)業(yè),學(xué)生成績(jī)登記、存檔等問(wèn)題都需要學(xué)校各個(gè)部門(mén)相互協(xié)調(diào)配合。所以,分級(jí)教學(xué)需要教務(wù)部門(mén)及各學(xué)院學(xué)生管理部門(mén)等方面的大力支持,相互協(xié)調(diào)才能順利實(shí)施,這也是分級(jí)教學(xué)能夠不斷進(jìn)行的可靠保證。

4.結(jié)語(yǔ)

近幾年我院進(jìn)行了概率論與數(shù)理統(tǒng)計(jì)課程的分級(jí)教學(xué),取得了一定的成績(jī),但也發(fā)現(xiàn)了許多問(wèn)題,如個(gè)別C級(jí)學(xué)生出現(xiàn)了自卑心理,分級(jí)成績(jī)對(duì)各種獎(jiǎng)(助)學(xué)金的評(píng)選帶來(lái)了一些矛盾,等等,這些問(wèn)題都要求我們探求解決之道??傊旨?jí)教學(xué)具有堅(jiān)實(shí)的理論依據(jù),更適合新形勢(shì)下高等教育教學(xué)改革的方向,是提高高等院校教學(xué)質(zhì)量的一條可行途徑。

參考文獻(xiàn):

[1]傅麗芳,鄧華玲.高等院校概率論數(shù)理統(tǒng)計(jì)課程分級(jí)教學(xué)的實(shí)踐與思考[J].大學(xué)數(shù)學(xué),2008,24,(01):13-16.

第8篇:概率統(tǒng)計(jì)教學(xué)范文

【關(guān)鍵詞】教學(xué)方法 概率論 教學(xué)案例

【中圖分類(lèi)號(hào)】G432.07 【文獻(xiàn)標(biāo)識(shí)碼】A 【文章編號(hào)】1674-4810(2014)33-0005-02

概率統(tǒng)計(jì)是現(xiàn)代大學(xué)理工、經(jīng)濟(jì)、社科、農(nóng)林、體育等專(zhuān)業(yè)必修課程。課程的學(xué)習(xí)對(duì)于培養(yǎng)和提高學(xué)生的創(chuàng)新能力與綜合素質(zhì)起著極為重要的作用。其不但為學(xué)生學(xué)習(xí)一些后續(xù)課程奠定必要的數(shù)學(xué)基礎(chǔ),而且對(duì)學(xué)生在數(shù)學(xué)知識(shí)的抽象性、邏輯性與嚴(yán)密性方面進(jìn)行一定的訓(xùn)練和熏陶,使他們具有理解和運(yùn)用邏輯關(guān)系、研究和領(lǐng)會(huì)抽象事物、認(rèn)識(shí)和利用數(shù)形規(guī)律的初步能力。與其他數(shù)學(xué)研究對(duì)象和分析方法都不一樣,概率統(tǒng)計(jì)的難點(diǎn)和關(guān)鍵是對(duì)概念的理解,學(xué)生普遍反映很難聽(tīng)懂。如何把抽象概念形象化、具體化、簡(jiǎn)明化,值得我們思考。

本文給出筆者在長(zhǎng)期從事概率統(tǒng)計(jì)的教學(xué)過(guò)程中針對(duì)概率統(tǒng)計(jì)和高數(shù)各章疑難點(diǎn),收集和構(gòu)想的一批趣味性教學(xué)實(shí)例,與諸位同行交流,希望能夠豐富概率統(tǒng)計(jì)課堂教學(xué)的內(nèi)容,提高學(xué)生學(xué)習(xí)興趣,改善教學(xué)效果。以下面幾個(gè)例子介紹概率統(tǒng)計(jì)問(wèn)題:

一 賭徒分莊問(wèn)題

上概率統(tǒng)計(jì)第一堂課,先簡(jiǎn)單介紹該課程的起源。概率論最初是研究賭博中的概率問(wèn)題,其中之一是著名的賭徒分莊問(wèn)題。三百多年前(17世紀(jì)中葉)法國(guó)有一個(gè)非常有名的賭徒名叫Mere,有一次他與Mitton賭博,兩人約定:各擲一次骰子出現(xiàn)點(diǎn)數(shù)六者為勝一局,五局三勝制,賭金各一萬(wàn)法郎。賭博進(jìn)行了三局,Mere兩勝一負(fù),此時(shí)因?yàn)樘厥庠蛸€博中止。問(wèn)如何根據(jù)現(xiàn)有結(jié)果來(lái)分割賭金。提供三種分莊方案(比例):

Mere

1/2

1

2/3

Mitton

1/2

1/3

問(wèn)學(xué)生選哪種方案,或有另外的分配方案?學(xué)生回答各種方案的都有,其中選第三種方案的居多。事實(shí)上,當(dāng)時(shí)兩賭徒選的就是第三種方案。但事后Mere覺(jué)得自己吃虧了,

――――――――――――――――――――――――――

就請(qǐng)教數(shù)學(xué)家Pascal。Pascal經(jīng)過(guò)分析得出結(jié)論,并把此問(wèn)題轉(zhuǎn)給另一位數(shù)學(xué)家Fermat,F(xiàn)ermat也得出同樣的結(jié)論。其

結(jié)論是Mere應(yīng)得,為什么?原分配方案對(duì),只考慮

了已經(jīng)發(fā)生的結(jié)果(2∶1),沒(méi)有考慮到如果賭博繼續(xù)進(jìn)行可能發(fā)生的結(jié)果。設(shè)賭博進(jìn)行完五局,后面有四種可能的結(jié)果:(+、+)、(+、-)、(-、+)、(-、-),其中“+”表示Mere勝,“-”表示Mere負(fù)。上述四種結(jié)果是等可能

的,且前三種是Mere贏,故Mere應(yīng)得。

據(jù)說(shuō),就是從此問(wèn)題討論開(kāi)始,法國(guó)數(shù)學(xué)家Pascal和Fermat與他們的好友荷蘭數(shù)學(xué)家Higens對(duì)賭博的概率問(wèn)題展開(kāi)了系統(tǒng)的研究,并由Higens寫(xiě)成《論賭博中的概率》一書(shū)。它是一部最早的概率論著作,那個(gè)時(shí)期也被定為概率論萌芽時(shí)期。

二 三張卡片的故事

有些古典概率結(jié)果是很直觀的,如擲硬幣出現(xiàn)正面和反

面的概率各一半;擲一顆骰子,出現(xiàn)1~6點(diǎn)的概率都是

等等。但是有些直觀是錯(cuò)誤的,看下面三張卡片的故事:

有三張卡片大小、形狀和顏色都一樣,其中一張中間兩面都畫(huà)有一個(gè)圓圈,另一張兩面中間畫(huà)有一個(gè)黑點(diǎn),第三張一面中間是圓圈,另一面是黑點(diǎn),如圖1所示。

從三張卡片中隨機(jī)地取一張,讓你看見(jiàn)其中一面,猜另一面的圖形。

分析1:假設(shè)你看到一面中間是圓圈,那么排除上述第二張,而第一、第三張反面一張是圓圈、一張是黑點(diǎn),故猜

另一面中間是圓圈或黑點(diǎn)的概率都是。

分析2:同樣假設(shè)你看到圓圈,排除第二張,把第一、第三張卡片中的圖案編號(hào)如圖2。

圖1 圖2

你看到的圓圈是1、2、3中之一,且是等可能的。當(dāng)你看到1號(hào)或3號(hào)時(shí),猜另一面為圓圈正確,當(dāng)你看見(jiàn)2號(hào)時(shí),猜反面是圓圈錯(cuò),所以當(dāng)你看見(jiàn)一面是圓圈時(shí)猜另一面是圓

圈猜中的概率為。

分析3:當(dāng)你看見(jiàn)圖案是什么,就猜出另一面也是什么,

成功的概率是(抽中第一、第三張卡片猜對(duì),第二張猜錯(cuò))。

顯然,上述分析2、3是對(duì)的,而分析1直觀對(duì),實(shí)際錯(cuò)了。

三 薄豐投針問(wèn)題

圓周率π是一個(gè)無(wú)理數(shù)。中國(guó)古代數(shù)學(xué)家祖沖之是世界上第一個(gè)將π值計(jì)算到小數(shù)點(diǎn)后面7位數(shù)的人,即3.1415926,這一紀(jì)錄保持了一千多年。法國(guó)數(shù)學(xué)家薄豐通過(guò)一個(gè)游戲得到π的近似值,精確到小數(shù)點(diǎn)后面5位,讓人嘆為觀止。在講幾何概型時(shí),我補(bǔ)充了這個(gè)例子。

薄豐是法國(guó)數(shù)學(xué)家,據(jù)說(shuō)他非常富有,每個(gè)周末都邀請(qǐng)親朋好友到家里度假。有一個(gè)周末,他邀請(qǐng)到20多位親朋好友到家,晚上酒足飯飽后,他對(duì)朋友說(shuō):今天我們來(lái)做一個(gè)游戲,大家每人拿一盒針(100枚),一根一根地往下丟,統(tǒng)計(jì)地上的針與地面平行線(地面磚交線)相交的數(shù)量,把統(tǒng)計(jì)結(jié)果告訴我。

一個(gè)小時(shí)過(guò)去了,游戲結(jié)束,大家把統(tǒng)計(jì)數(shù)據(jù)交給薄豐。薄豐統(tǒng)計(jì)出結(jié)果,并把它代入一個(gè)預(yù)先設(shè)定好的計(jì)算公式,計(jì)算結(jié)果讓大家大吃一驚,其結(jié)果是3.14136,太奇妙了。

讓我們看看奇跡是如何發(fā)生的。設(shè)地面平行線的距離為2d,針的長(zhǎng)度為2L,針的中點(diǎn)至最行線的距離為x,針與平行線的夾角為θ,如圖3。

這是幾何概率問(wèn)題:

樣本空間

針與線相交的充要條件是

圖3 圖4

故針與直線相交的概率為

設(shè)投針總量為N,針與線相交的數(shù)量為n,則其頻率為。

由頻率與概率的關(guān)系得:。

已知N=2000,n=382,d=20cm,L=6cm,一并代入

上式得:。

通過(guò)這個(gè)實(shí)驗(yàn),求出π的近似值,確實(shí)讓人驚奇。學(xué)生們可以自己設(shè)計(jì)一個(gè)薄豐投針的程序用電腦模擬實(shí)驗(yàn),可以得到更精準(zhǔn)的π值。

四 概率為0與不可能事件

我們知道,不可能事件的概率為0,即P(φ)=0。但是,概率為0的事件一定是不可能事件嗎?答案是否定的。

例如,向[0,1]區(qū)間內(nèi)隨機(jī)投點(diǎn),問(wèn)點(diǎn)恰好落在上的概率

P()=?,設(shè)P()=p,若p>0,則P()=P()=

p>0,n=1,2,…

由可列可加性,矛盾。故p=0,而“點(diǎn)恰

好落在上”是可能發(fā)生的事件。

注:此例也表明,概率為1的事件不一定是必然事件。

五 可列無(wú)窮與不可列無(wú)窮

細(xì)心的同學(xué)可能會(huì)問(wèn),在上例中,對(duì),有

P(χ)=0。于是,矛盾。是呀!問(wèn)題出在哪里呢?

概率公理化定義中第三條可列可加性是指:設(shè)有可列多個(gè)不相容事件A1,A2,…,An

而是不可列無(wú)窮多之和,下式是不成立的。

概率公理化定義中第三條可列可加性之所以強(qiáng)調(diào)“可列可加”而不是任意無(wú)窮可加,上述例子正是好的注解。

六 最大似然的估計(jì)

最大似然的估計(jì)是參數(shù)點(diǎn)估計(jì)的一種重要方法,一般教材中是這樣闡述的:設(shè)總體X~f(x,θ),其中θ是要估計(jì)的參數(shù),抽取一個(gè)樣本(X1,X2,…,Xn)其聯(lián)合概率函數(shù)為

∠(θ),其中(x1x2…xn)為樣本值稱(chēng)∠(θ)為

似然函數(shù)。選取θ的估計(jì)值,使∠(θ)取到最大值,這個(gè)估計(jì)值就稱(chēng)為最大似然估計(jì)。為什么要選θ的估計(jì)值,使∠(θ)取到最大值?學(xué)生很難理解這種思維方法。在長(zhǎng)期的教學(xué)過(guò)程中,我構(gòu)想了下面這個(gè)例子:

1個(gè)盒子中有10個(gè)球,分黑白兩種顏色,兩種球比例為9∶1,但不知哪種球多,現(xiàn)從中任取一個(gè)球,發(fā)現(xiàn)是白球,問(wèn)盒中黑白球各多少?

學(xué)生回答:白球9個(gè),黑球1個(gè)。為什么呢?學(xué)生回答,白球多,取到的概率大。如此簡(jiǎn)單的一個(gè)例子可以讓學(xué)生對(duì)這一抽象概念有直接的認(rèn)識(shí)。

七 結(jié)束語(yǔ)

本文是筆者在概率統(tǒng)計(jì)教學(xué)改革與實(shí)踐中獲得的一點(diǎn)粗淺的認(rèn)識(shí)和體會(huì),愿與各位同仁交流。

參考文獻(xiàn)

[1]宋桂榮.概率論與數(shù)理統(tǒng)計(jì)課程教學(xué)改革研究[J].時(shí)代教育,2012(19):9~11

第9篇:概率統(tǒng)計(jì)教學(xué)范文

概率統(tǒng)計(jì)方法的實(shí)際應(yīng)用離不開(kāi)現(xiàn)代信息處理技術(shù)??梢杂迷诟怕式y(tǒng)計(jì)教學(xué)上軟件很多。概率統(tǒng)計(jì)課程可選用SPSS、SAS、Matlab、Excle等。SPSS的界面友好,易學(xué)易用。沒(méi)有學(xué)過(guò)SPSS的學(xué)生也可以在幾個(gè)小時(shí)內(nèi)學(xué)會(huì)使用SPSS。利用SPSS的11個(gè)功能模塊,大量的概率統(tǒng)計(jì)函數(shù)可直接進(jìn)行計(jì)算和查表。

比如,直接調(diào)用SPSS相應(yīng)模塊可以迅速實(shí)現(xiàn)各種概率密度函數(shù),分布函數(shù)以及隨機(jī)變量的數(shù)字特征的計(jì)算。利用SPSS的統(tǒng)計(jì)圖種類(lèi),能夠很輕易的實(shí)現(xiàn)統(tǒng)計(jì)作圖,而且圖形準(zhǔn)確美觀,教學(xué)也更顯生動(dòng),容易為學(xué)生接受,而且增強(qiáng)他們處理大批數(shù)據(jù)的信心。相比SPSS、SAS,Excel軟件顯得更為易學(xué)和高效。它是辦公必備軟件,大一時(shí)學(xué)生就學(xué)會(huì)了它的一般應(yīng)用。利用Excel齊全的統(tǒng)計(jì)分析功能、強(qiáng)大的統(tǒng)計(jì)圖表繪制功能、數(shù)據(jù)結(jié)果和統(tǒng)計(jì)圖形與其他統(tǒng)計(jì)軟件良好的兼容性,我們可以很好地實(shí)現(xiàn)教學(xué)目標(biāo)。Matlab是以數(shù)值計(jì)算為主要特色的工具軟件,其所帶的統(tǒng)計(jì)工具箱幾乎涵蓋了數(shù)理統(tǒng)計(jì)的所有領(lǐng)域,我們可以很方便的進(jìn)行參數(shù)估計(jì)、假設(shè)檢驗(yàn)、方差分析、回歸分析等。

其他的一些具有統(tǒng)計(jì)功能的軟件就不再介紹了,這些軟件掌握起來(lái)對(duì)大學(xué)的師生來(lái)說(shuō),都是很容易的,但是由于課時(shí)等方面的原因,我們?cè)诟怕式y(tǒng)計(jì)實(shí)際教學(xué)中很少用到,事實(shí)上利用這些軟件不僅使得教學(xué)方式多樣化,生動(dòng)形象化,而且更容易為學(xué)生理解,我們不妨在教學(xué)中抽出一些課時(shí)讓學(xué)生到機(jī)房利用這些軟件驗(yàn)證所學(xué)內(nèi)容。

2將數(shù)學(xué)建模思想融入概率統(tǒng)計(jì)學(xué)中

根據(jù)教育部等部門(mén)關(guān)于進(jìn)一步加強(qiáng)高校實(shí)踐育人工作的若干意見(jiàn),各高校要把加強(qiáng)實(shí)踐教學(xué)方法改革作為專(zhuān)業(yè)建設(shè)的重要內(nèi)容,重點(diǎn)推行基于問(wèn)題、基于項(xiàng)目、基于案例的教學(xué)方法和學(xué)習(xí)方法,加強(qiáng)綜合性實(shí)踐科目設(shè)計(jì)和應(yīng)用。要加強(qiáng)大學(xué)生創(chuàng)新創(chuàng)業(yè)教育,支持學(xué)生開(kāi)展研究性學(xué)習(xí)、創(chuàng)新性實(shí)驗(yàn)、創(chuàng)業(yè)計(jì)劃和創(chuàng)業(yè)模擬活動(dòng)。從最近幾年的全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中,我們看到,競(jìng)賽涉及的概率和統(tǒng)計(jì)知識(shí)較多,這也反映著,概率統(tǒng)計(jì)知識(shí)與人們的日常生活乃至科學(xué)技術(shù)緊密相關(guān)。

為了響應(yīng)教育部加強(qiáng)高校實(shí)踐育人工作以及中華民族富民強(qiáng)國(guó)夢(mèng)想,概率統(tǒng)計(jì)在教學(xué)中應(yīng)該在內(nèi)容上注意吸收有趣的應(yīng)用題目比如經(jīng)濟(jì)現(xiàn)象、天氣預(yù)報(bào)等,體現(xiàn)數(shù)學(xué)建模的思想,從而理論聯(lián)系實(shí)際。如2012年高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽本科組A題葡萄酒的評(píng)價(jià),就是一個(gè)統(tǒng)計(jì)知識(shí)占主導(dǎo)的一個(gè)賽題,它需要建立方差分析模型,討論置信區(qū)間,利用SAS軟件的相關(guān)性分析模塊,以及多元線性回歸分析等。由于概率統(tǒng)計(jì)是我校的一個(gè)省級(jí)精品課,我們對(duì)概率統(tǒng)計(jì)這門(mén)課比較注重教學(xué)方式和方法的創(chuàng)新,注重支持學(xué)生開(kāi)展研究性學(xué)習(xí),我們有一組學(xué)生獲得了本年度的高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽本科組全國(guó)一等獎(jiǎng)。