公務(wù)員期刊網(wǎng) 精選范文 集合概念教學(xué)反思范文

集合概念教學(xué)反思精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的集合概念教學(xué)反思主題范文,僅供參考,歡迎閱讀并收藏。

集合概念教學(xué)反思

第1篇:集合概念教學(xué)反思范文

關(guān)鍵詞:中學(xué)數(shù)學(xué);教學(xué)反思;研究

美國(guó)學(xué)者波斯納提出:一個(gè)教師的成長(zhǎng)=經(jīng)驗(yàn)+反思。一個(gè)人或許工作了二十年,如果沒有反思,也只是一個(gè)經(jīng)驗(yàn)的二十次重復(fù)。

反思什么?在怎樣的基礎(chǔ)上進(jìn)行反思,這是教師教學(xué)反思的出發(fā)點(diǎn)。如果教師反思的出發(fā)點(diǎn)沒有建立在一定的教學(xué)理念的基礎(chǔ)上,那么教師的反思將是低層次的反思。

一、教學(xué)模式的反思

現(xiàn)行倡導(dǎo)的建構(gòu)主義教學(xué)模式是:給出某一情境下的具體問題——抽象、概括符號(hào)化——觀察歸納其特征得出結(jié)果——解釋、拓展并解決具體問題。這種教學(xué)方法是建立在學(xué)生認(rèn)知發(fā)展水平基礎(chǔ)上的教學(xué)。教師在學(xué)生已有知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上,給學(xué)生創(chuàng)設(shè)從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),且不斷激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)積極性,幫助他們?cè)谧灾魈骄亢秃献鲗W(xué)習(xí)的過程中真正體驗(yàn)數(shù)學(xué)學(xué)習(xí)的過程。從而掌握數(shù)學(xué)的基礎(chǔ)知識(shí)與技能,數(shù)學(xué)學(xué)習(xí)的思想方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。

案例1:在講授《指數(shù)函數(shù)》時(shí),如果按教材順序講:則是先給出指數(shù)函數(shù)的定義,畫出指數(shù)函數(shù)的圖像,接著結(jié)合著圖像總結(jié)出性質(zhì),最后運(yùn)用性質(zhì)以及解決實(shí)際問題。這是典型的行為主義和認(rèn)知主義觀下的數(shù)學(xué)教學(xué)模式,我們現(xiàn)在數(shù)學(xué)教學(xué)教師,在講授這部分知識(shí)時(shí),老師大都是用這種教學(xué)方式傳授給的,且在相當(dāng)?shù)囊欢螘r(shí)間內(nèi)都是模仿公式做了大量的習(xí)題。是機(jī)械式的學(xué)習(xí)。用這種教學(xué)方式給現(xiàn)在的學(xué)生上課會(huì)是越上越枯燥。我們的教師按建構(gòu)主義教學(xué)模式上這節(jié)課:首先向?qū)W生介紹:生活中銀行貸款利率的的計(jì)算,生產(chǎn)中一些零件的合格概率分布的計(jì)算,部隊(duì)某核武器放射性物質(zhì)的衰變,考古中所用的14C的衰減,......等等,這些內(nèi)容的研究都與指數(shù)函數(shù)有關(guān),比如:拿簡(jiǎn)單的生活事例為例,做兩個(gè)小游戲。1.某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),......,依次類推,1個(gè)這樣的細(xì)胞分裂x次后,細(xì)胞的總個(gè)數(shù)y是多少?2.一根1米長(zhǎng)的繩子,第一次截取它的一半,第二次截取剩余繩子的一半,就這樣截x次后,試寫出繩子剩余的長(zhǎng)度y與截的次數(shù)x次函數(shù)關(guān)系式。一二組試著畫圖做第一個(gè),三四組動(dòng)手操作按第二個(gè)題目要求解決問題。學(xué)生們開始在研究中相互促進(jìn)、相互提示,有人算、有人畫。最后都得到結(jié)論:“y=2x和y=(1/2)x”。這是一個(gè)探索過程,接著,老師引導(dǎo)著學(xué)生一起分析函數(shù)y=2x和y=(1/2)x的共同特征是什么?能類比出這類函數(shù)表達(dá)式的一般形式嗎?結(jié)合著前面學(xué)過的冪函數(shù)的形式來(lái)看,我們做出的這兩個(gè)函數(shù)的底數(shù)分別是2和1/2,但是我們沒有做的,比如:y=10x和y=(1/10)x的等等,像這樣的函數(shù)太多了,那么,我們?cè)趺茨軐⑦@類函數(shù)表示出來(lái)呢?這一問,使學(xué)生又進(jìn)入了深思。有同學(xué)說(shuō),用字母表示數(shù),這是我們第一章代數(shù)式中學(xué)過的內(nèi)容,一般用字母a來(lái)表示,因此總結(jié)得出指數(shù)函數(shù)的定義。

知識(shí)的學(xué)習(xí)是一個(gè)構(gòu)建的過程,教師的講解不能直接將知識(shí)傳輸給學(xué)生,那么教師只能通過以組織者、合作者和引導(dǎo)者的身份參與教學(xué)過程,同時(shí)還要對(duì)教材進(jìn)行再加工,有創(chuàng)造性的設(shè)計(jì)教學(xué)過程。

教師只有通過對(duì)上述教學(xué)實(shí)例的反思,通過比較才能真正理解學(xué)生新的教學(xué)理念。破自己多年在傳統(tǒng)模式下已習(xí)慣了的學(xué)習(xí)或教學(xué)方式,在新的教學(xué)理念的基礎(chǔ)上進(jìn)行教學(xué)的再實(shí)踐,再反思。先讓學(xué)生結(jié)合著實(shí)際明白學(xué)這節(jié)內(nèi)容的有用性,然后以生活事例為例做兩個(gè)小游戲,探索性的學(xué)習(xí)是學(xué)生智能提高的源泉。上述教學(xué)步步設(shè)疑,層層深入,在不知不覺中把學(xué)生引入探究的軌道上。教學(xué)過程自然流暢,由表及里,環(huán)環(huán)相扣有教師的宏觀指導(dǎo)和適時(shí)的點(diǎn)撥,又有學(xué)生主動(dòng)積極的參與。

2.數(shù)學(xué)教學(xué)與日常生活聯(lián)系的反思

現(xiàn)在的數(shù)學(xué)教材和課堂教學(xué)大都是從概念到概念,從定理到推論,強(qiáng)調(diào)演繹的邏輯和證法的嚴(yán)謹(jǐn)。而數(shù)學(xué)的現(xiàn)實(shí)背景、理論發(fā)生的過程往往都被忽略。這就極易導(dǎo)致學(xué)生對(duì)數(shù)學(xué)的錯(cuò)誤認(rèn)識(shí):學(xué)習(xí)數(shù)學(xué)就是記住書本上的定義、法則、公式、的定理,能順利的進(jìn)行數(shù)學(xué)計(jì)算、變換或證明。即過分強(qiáng)調(diào)數(shù)學(xué)的確定性、可變性,而忽略了數(shù)學(xué)是源于生活又服務(wù)于生活的實(shí)踐性。從而學(xué)生在數(shù)學(xué)學(xué)習(xí)中的觀察、直觀描述、猜想、試驗(yàn)等活動(dòng)被大大的淡化。致使學(xué)生學(xué)習(xí)無(wú)興趣、無(wú)應(yīng)用意識(shí)。如在講《集合的運(yùn)算》時(shí),如果按課本程序的形式呈現(xiàn)內(nèi)容知識(shí),這節(jié)課的學(xué)習(xí)過程就是由概念——方法——應(yīng)用。學(xué)生缺發(fā)對(duì)知識(shí)的實(shí)際背景的了解,枯燥乏味,缺發(fā)理解性的把握知識(shí)及對(duì)知識(shí)的實(shí)際運(yùn)用。我在上這節(jié)課時(shí)是這樣進(jìn)行的:上課開始幾分鐘,由學(xué)生觀看屏幕:

案例2: 集合的運(yùn)算

先讓學(xué)生進(jìn)行同桌倆從文具盒里取筆操作,若取完后都有鉛筆或圓珠筆,很籠統(tǒng)地講,這就是同桌倆文具盒里筆所構(gòu)成集合交集合(簡(jiǎn)稱交集);接著再讓同桌倆把取出來(lái)的所有的筆都裝到某一個(gè)文具盒里,把相同的筆拿出來(lái),這個(gè)集合就是同桌倆文具盒里筆所構(gòu)成集合的并集合(簡(jiǎn)稱并集)。通過操作,學(xué)生就會(huì)探究出交集與并集運(yùn)算的知識(shí)。這節(jié)課又再次說(shuō)明,教師是教學(xué)的組織者、引導(dǎo)者,在充分調(diào)動(dòng)學(xué)生積極性的基礎(chǔ)上,讓知識(shí)與能力并重,為學(xué)生對(duì)新的概念的學(xué)習(xí)提供真實(shí)的實(shí)際背景,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)學(xué)生的數(shù)學(xué)素養(yǎng)。是新的教學(xué)方式下知識(shí)的呈現(xiàn)方式。

第2篇:集合概念教學(xué)反思范文

關(guān)鍵詞: 抽象函數(shù) 定義域 函數(shù)概念

函數(shù)概念是中學(xué)數(shù)學(xué)知識(shí)體系中的核心概念,它貫穿整個(gè)中學(xué)數(shù)學(xué)教學(xué)過程,高中的函數(shù)定義又是基于集合論知識(shí)的,由于其定義文字?jǐn)⑹龇绞降膹?qiáng)邏輯性、概念的抽象性和形式化的符號(hào)表示,一直以來(lái)是數(shù)學(xué)教學(xué)的一個(gè)難點(diǎn).

1.問題的產(chǎn)生

在一次練習(xí)中,學(xué)生碰到了如下問題:

已知函數(shù)f(x)的定義域?yàn)椋?1,0),則函數(shù)f(2x-1)的定義域?yàn)??搖?搖 ?搖?搖.

這是一道典型的復(fù)合函數(shù)定義域的求解問題,也是學(xué)生最頭疼,理解上最易混淆的題型.常見的錯(cuò)誤解法為:

f(x)的定義域?yàn)椋?1,0),所以x∈(-1,0),于是2x-1∈(-3,-1),即f(2x-1)的定義域?yàn)椋?3,-1).

經(jīng)過老師的耐心講解,學(xué)生認(rèn)識(shí)到,函數(shù)f(2x-1)的定義域應(yīng)該是求x的取值范圍,而2x-1應(yīng)該滿足f(x)的定義域?yàn)椋?1,0).所以正確的解法是2x-1∈(-1,0),解出x∈(0,■),即f(2x-1)的定義域?yàn)椋?,■).

盡管學(xué)生聽懂了老師的解法,但是似乎理解上依然存在困惑.隨后,為了了解學(xué)生是否真正掌握了該類問題,筆者又給出了該題的變形:

已知函數(shù)f(2x-1)的定義域?yàn)椋?1,0),則函數(shù)f(x)的定義域?yàn)??搖 ?搖?搖?搖.

兩道類型相似的題放在一起,學(xué)生的思維一下子就混亂了,實(shí)在搞不清哪種解法對(duì)應(yīng)哪種題.經(jīng)過反復(fù)練習(xí)后,還是有很多學(xué)生會(huì)出錯(cuò),停留在似懂非懂的階段,而即便能給出正確解答的同學(xué),也說(shuō)不個(gè)所以然來(lái),只是機(jī)械地記憶解題套路罷了.

通過對(duì)學(xué)生的調(diào)研,了解學(xué)生對(duì)該問題的思考發(fā)現(xiàn),學(xué)生在以下方面不理解:

1.f(x)的定義域指的是的取值范圍,f(2x-1)的定義域也是指x的取值范圍,那這兩個(gè)函數(shù)的定義域到底哪個(gè)是x的取值范圍?

2.一會(huì)兒是x∈(-1,0),一會(huì)兒又是2x-1∈(-1,0),變形題中只是將f(x)換成了f(2x-1),條件的數(shù)值都沒有變,怎么整個(gè)解答過程就不一樣了?

3.在這類題中,函數(shù)沒有具體的表達(dá)式,只是抽象的表示,這些抽象函數(shù)的實(shí)際意義到底是什么?

2.對(duì)問題的研究

學(xué)生的這些困惑中,我們不難發(fā)現(xiàn)一些問題,一是不少學(xué)生解題都是靠記憶解題方法而不是理解其實(shí)質(zhì),解題時(shí)重形式而忽略理解.二是不少學(xué)生不理解函數(shù)的定義域是什么,函數(shù)的定義域就是求x的取值范圍這種觀念根深蒂固.

因此,造成學(xué)生困惑的根本原因就是對(duì)函數(shù)概念本身的理解不到位,對(duì)函數(shù)片面不深入的理解導(dǎo)致了學(xué)生認(rèn)識(shí)上的偏差,在解題時(shí)就只能憑借形式化的解題過程,對(duì)于其中出現(xiàn)的各種變量不能理解其意義.

學(xué)生在初中所學(xué)習(xí)的函數(shù)定義為:設(shè)在某變化過程中有兩個(gè)變量x和y,如果對(duì)于x在某一范圍內(nèi)的每一個(gè)值,y都有唯一確定的值和它對(duì)應(yīng),那么,y叫x的函數(shù),x叫自變量.

這一定義很直觀,學(xué)生容易理解,因?yàn)樗m合初中生的生理和心理特點(diǎn),但是它對(duì)函數(shù)的本質(zhì)――對(duì)應(yīng)關(guān)系缺乏充分刻畫,未能強(qiáng)調(diào)函數(shù)是x,y雙方變化的總體,而把變量y定義為x的函數(shù),以至形成一個(gè)學(xué)生中具有普遍性的錯(cuò)誤,認(rèn)為y就是函數(shù).

高中函數(shù)定義是在集合概念基礎(chǔ)上給出的,即當(dāng)A、B為非空數(shù)集時(shí),如果按照某種對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都存在唯一確定的數(shù)y與之對(duì)應(yīng),那么就把對(duì)應(yīng)關(guān)系f叫做定義在集合A上的函數(shù).記作f:AB,或y=f(x),x∈A.在學(xué)習(xí)了映射后,函數(shù)概念可以敘述為:設(shè)A、B為非空數(shù)集,f是A到B的一個(gè)映射,那么映射f:AB叫做A到B的函數(shù).這種定義強(qiáng)調(diào)了函數(shù)是A、B、f三者的整體,是一類特殊的映射.顯然此定義接近以集合論為基礎(chǔ)的現(xiàn)代函數(shù)定義.此定義與初中定義相比,舍去了“變化”這一非本質(zhì)的特征,突出了“對(duì)應(yīng)”的思想,這有助于學(xué)生對(duì)函數(shù)本質(zhì)的理解,促使學(xué)生的思維方式由直觀向抽象轉(zhuǎn)變,對(duì)學(xué)生的思維提出了更高的要求.

這種定義方式采取由傳統(tǒng)定義逐步過渡到現(xiàn)代定義的編排方式,符合人類認(rèn)識(shí)由低級(jí)到高級(jí)的規(guī)律.然而學(xué)生并不能夠很好地適應(yīng)這樣的定義方式,在理解上常常是片面的.比如,學(xué)生對(duì)函數(shù)的認(rèn)識(shí)往往固化為f(x),先入為主地認(rèn)為函數(shù)就應(yīng)該是一個(gè)表達(dá)式,x代表定義域,f(x)代表值域.

因此我們不得不反思:學(xué)生在初中所學(xué)習(xí)的是片面的不完整的定義,在教學(xué)時(shí)教師應(yīng)當(dāng)如何設(shè)計(jì)教學(xué)才能讓學(xué)生轉(zhuǎn)變以往根深蒂固的對(duì)函數(shù)概念的認(rèn)識(shí),更接近其本質(zhì)?

3.函數(shù)概念教學(xué)的反思

在數(shù)學(xué)歷史上,函數(shù)概念的定義也是不斷發(fā)展的,函數(shù)概念來(lái)源于實(shí)際,應(yīng)用于實(shí)際,并在應(yīng)用中不斷發(fā)現(xiàn)自身的缺陷,使其進(jìn)一步完善,從而促進(jìn)了數(shù)學(xué)的發(fā)展,同時(shí),數(shù)學(xué)的發(fā)展又為函數(shù)概念的形式化與嚴(yán)密化提供了良好的條件.將函數(shù)看成是一類映射,更接近函數(shù)的本質(zhì).

在函數(shù)的概念教學(xué)過程中,我們應(yīng)當(dāng)加強(qiáng)“映射”這一概念,讓學(xué)生認(rèn)識(shí)到函數(shù)不是一個(gè)或幾個(gè)表達(dá)式,而是一種“映射”,是從一個(gè)數(shù)集到另一個(gè)數(shù)集的對(duì)應(yīng)關(guān)系.在訓(xùn)練學(xué)生對(duì)函數(shù)的理解上時(shí),不應(yīng)該只有表達(dá)式,而是要強(qiáng)化學(xué)生對(duì)符號(hào)、圖形的解讀能力.

在函數(shù)的概念教學(xué)中,我們經(jīng)常會(huì)借助下面的圖形幫助學(xué)生理解函數(shù)概念:

這張圖非常直觀地表現(xiàn)了函數(shù)的形成過程,各個(gè)符號(hào)的意義:f是建立在兩個(gè)集合之間的函數(shù),集合A中的每個(gè)元素都在函數(shù)f(x)的定義域中.而對(duì)于f(x)這個(gè)函數(shù)符號(hào),我們更應(yīng)該把它理解為函數(shù)f作用在元素上x.在真正理解了這張圖的基礎(chǔ)上,我們可以進(jìn)一步加深函數(shù)的概念:

對(duì)于這張圖的解讀,將檢驗(yàn)學(xué)生對(duì)函數(shù)概念真正的理解程度,我們可以設(shè)置以下幾個(gè)問題:

1.這里一共有幾個(gè)函數(shù)?

2.每個(gè)函數(shù)所對(duì)應(yīng)的定義域是哪個(gè)集合?

3.這幾個(gè)集合中的元素是怎樣形成的?

在這張圖中,一共建立了從f:AB,g:BC,以及g。f:AC三個(gè)映射,所以一共可以看成有三個(gè)函數(shù),而AC這個(gè)映射由兩個(gè)映射f和g共同組成,這就是復(fù)合函數(shù)g[f(x)].而對(duì)于這三個(gè)映射,箭頭“起始”集合便是所代表函數(shù)的定義域.

如果我們從映射的角度理解文章開頭時(shí)提出的問題,或許更易于理解:

函數(shù)f(2x-1)應(yīng)該看成兩個(gè)函數(shù)的復(fù)合:g(x)=2x-1與f(x),在這里g(x)與f(x)僅僅是代表兩個(gè)函數(shù)的符號(hào),我們不能認(rèn)為寫成f(x)就意味著映射f是作用在x上的.在這整個(gè)的變化中,x先由映射g作用變成2x-1,然后2x-1再由f作用變成f(2x-1),函數(shù)f(2x-1)的定義域?qū)?yīng)著集合A,而函數(shù)f(x)的定義域則對(duì)應(yīng)著集合B,而集合B中的元素是集合A中的元素x先由映射g作用變成了2x-1.

通過這張圖表,我們就可以理順各個(gè)概念間的關(guān)系,在實(shí)際解題中可以幫助學(xué)生快速找到解決問題的方向.以文章開頭的兩道問題為例:

先畫出整個(gè)問題中出現(xiàn)的對(duì)應(yīng)關(guān)系圖:

1.若已知條件是f(x)的定義域?yàn)椋?1,0),則映射f的起始集合B為其定義域,所以B中的元素2x-1∈(-1,0),此時(shí)可以反解出集合A中的元素x的范圍是(0,■),即為函數(shù)f(2x-1)的定義域.

2.若f(2x-1)的定義域?yàn)椋?1,0),函數(shù)f(2x-1)的起始集合為A,所以A中的元素x∈(-1,0),此時(shí)可以解出集合B中的元素2x-1的范圍是(-3,-1),即為函數(shù)f(x)的定義域.

4.對(duì)教學(xué)的啟示

筆者采用改進(jìn)后的講解方法對(duì)該類問題向?qū)W生進(jìn)行了解釋,學(xué)生在函數(shù)概念的理解上有了明顯的改進(jìn),對(duì)于該類抽象函數(shù)定義域的求解問題基本上能夠從容應(yīng)對(duì)了,該問題似乎暫告一段落,但是通過對(duì)這類問題的研究,對(duì)于教師教學(xué)應(yīng)當(dāng)有更多的啟示:學(xué)生在接受新知識(shí)時(shí),都要經(jīng)歷一個(gè)從陌生到熟悉的過程,由于接觸時(shí)間的不足,并不能像老師那樣做到融會(huì)貫通,理解一個(gè)新知識(shí)是需要花時(shí)間的,教師應(yīng)當(dāng)從學(xué)生思維的疑惑點(diǎn)出發(fā),分析學(xué)生在理解上出現(xiàn)的障礙,有針對(duì)性地設(shè)計(jì)教學(xué)方法.學(xué)生在解題時(shí),往往采用形式化的記憶,即只是單純地記憶解題步驟,而對(duì)于其來(lái)龍去脈缺少理解,當(dāng)題型出現(xiàn)變化時(shí),解題就會(huì)出現(xiàn)混淆,對(duì)于抽象程度較高的知識(shí)點(diǎn),教師可以設(shè)計(jì)一些有實(shí)際意義的圖像幫助學(xué)生理解問題的本質(zhì).

參考文獻(xiàn):

[1]蔣美麗.初高中函數(shù)概念教學(xué)銜接淺談[J].華夏教師,2010(03).

[2]張先葉.高中函數(shù)概念教學(xué)的困難成因現(xiàn)狀分析[J].科技信息,2011(13).

第3篇:集合概念教學(xué)反思范文

1 什么是“有效教學(xué)”

所謂“有效”,主要是指通過教師在一段時(shí)間的教學(xué)之后,學(xué)生所獲得的具體的進(jìn)步或發(fā)展。也就是說(shuō),學(xué)生有無(wú)進(jìn)步或發(fā)展是教學(xué)有沒有效益的唯一指標(biāo)。教學(xué)有沒有效益,并不是指教師有沒有教完內(nèi)容或教得認(rèn)真不認(rèn)真,而是指學(xué)生有沒有學(xué)到什么或?qū)W生學(xué)得好不好。如果學(xué)生學(xué)了沒有收獲,即使教師教得很辛苦也是無(wú)效教學(xué)。同樣,如果學(xué)生學(xué)得很辛苦,但沒有得到應(yīng)有的發(fā)展,也是無(wú)效或低效教學(xué)。

有效教學(xué)的“教學(xué)”,是指教師引起、維持和促進(jìn)學(xué)生學(xué)習(xí)的所有行為。它主要包括三個(gè)方面:一是引發(fā)學(xué)生的學(xué)習(xí)意向。即教師通過激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī),使教學(xué)在學(xué)生“想學(xué)”的心理基礎(chǔ)上展開。二是明確學(xué)生所要達(dá)到的目標(biāo)。即教師要讓學(xué)生知道“學(xué)什么”和“學(xué)到什么程度”。學(xué)生只有知道自己要“學(xué)什么”和“學(xué)到什么程度”,才會(huì)有意識(shí)地主動(dòng)參與。三是采用學(xué)生易于理解和接受的方式。教學(xué)語(yǔ)言要純凈,能讓學(xué)生聽清楚、聽明白;教學(xué)手段要先進(jìn),能讓學(xué)生易理解、易接受;教學(xué)方法要靈活,能讓學(xué)生學(xué)得會(huì)、學(xué)得透。教師的教學(xué)如果不能做到這些,即使教得再辛苦,也不能稱之為真正的教學(xué)。

2 有效教學(xué)的理念

(1)關(guān)注學(xué)生的進(jìn)步或發(fā)展。

教師教學(xué)要有“對(duì)象”意識(shí),不能“唱獨(dú)腳戲”,因?yàn)殡x開了“學(xué)”,也就無(wú)所謂“教”。這就要求教師必須確立學(xué)生的主體地位,樹立“一切為了學(xué)生的發(fā)展”的思想。這種發(fā)展是“全人”的發(fā)展,而不是某一方面的發(fā)展。

(2)關(guān)注教學(xué)效益。

教師教學(xué)要有時(shí)間與效益觀念,既不能“跟著感覺走”,也不能簡(jiǎn)單地把“效益”理解為“花最少的時(shí)間教最多的內(nèi)容”。教學(xué)效益不同于生產(chǎn)效益,它不取決于教師教多少內(nèi)容,而取決于單位時(shí)間內(nèi)學(xué)生的學(xué)習(xí)結(jié)果與學(xué)習(xí)過程的綜合。

(3)關(guān)注教學(xué)的可測(cè)性。

教師教學(xué)要有明確的目標(biāo),并應(yīng)盡可能使目標(biāo)具有可測(cè)性,教學(xué)完結(jié)時(shí),能夠?qū)虒W(xué)目標(biāo)的達(dá)成實(shí)施測(cè)量。當(dāng)然,不能簡(jiǎn)單地說(shuō)“可量化”的教學(xué)就是好的、科學(xué)的教學(xué)。有效教學(xué)既反對(duì)拒絕量化,也反對(duì)過于量化。應(yīng)該把定量與定性、過程與結(jié)果綜合起來(lái),全面體現(xiàn)學(xué)生的學(xué)業(yè)成績(jī)與教師的教學(xué)成績(jī)。

(4)關(guān)注教學(xué)反思。

教師要不斷反思自己的教學(xué)行為,持續(xù)地追問:“什么樣的教學(xué)才是有效的?”、“我的教學(xué)有效嗎?”、“有沒有比這更有效的教學(xué)?”等,這樣,才能使自己的教學(xué)更加有效。

3 有效教學(xué)的模式—“學(xué)、探、練、展”模式

根據(jù)上述有效教學(xué)的要求與理念,本人在多年教學(xué)實(shí)踐中總結(jié)了“學(xué)、探、練、展”教學(xué)模式,這種教學(xué)要求建立在有感染力的真實(shí)事件或真實(shí)問題的基礎(chǔ)上,此教學(xué)模式也符合建構(gòu)主義學(xué)習(xí)理論。“學(xué)、探、練、展”教學(xué)的環(huán)節(jié)有以下幾個(gè)方面。

(1)創(chuàng)設(shè)情境。

創(chuàng)設(shè)學(xué)習(xí)情境,使學(xué)習(xí)能在和現(xiàn)實(shí)情況基本一致或類似的情境中發(fā)生。激發(fā)學(xué)生的求知欲,鼓勵(lì)他們參與到學(xué)習(xí)活動(dòng)中來(lái)。首先確定要學(xué)習(xí)的問題或任務(wù)。教師應(yīng)選擇出與當(dāng)前學(xué)習(xí)主題密切相關(guān)的真實(shí)事件或問題作為學(xué)習(xí)的中心內(nèi)容(讓學(xué)生面臨一個(gè)需要立即去解決的現(xiàn)實(shí)問題),明確教學(xué)目標(biāo)。比如我在講“集合”這節(jié)內(nèi)容時(shí),師:同學(xué)們開學(xué)領(lǐng)到新書后,大都會(huì)翻開來(lái)看看,當(dāng)翻到數(shù)學(xué)課本的第一章第一節(jié)時(shí)“集合”兩字便躍入眼簾?!凹稀弊鳛閯?dòng)詞,同學(xué)們?cè)谏象w育課時(shí)聽的最多,常常是上課鈴聲剛過,體育老師清脆的哨聲便響起,同時(shí)高喊:某某班的全體同學(xué)集會(huì)!聽到口令,本班的全體同學(xué)便會(huì)從四面八方聚集到體育老師身邊。而那些不是本班的學(xué)生便會(huì)自動(dòng)走開。這樣一來(lái),體育老師的一聲“集合”(動(dòng)詞)就把“某些指定對(duì)象集在一起”了。因?yàn)榫唧w而實(shí)際,便于學(xué)生理解并有明確的學(xué)習(xí)目標(biāo)。

(2)自主、探究與協(xié)作。

在這一環(huán)節(jié)中,學(xué)生按照任務(wù)要求進(jìn)行學(xué)習(xí)、討論(合作或個(gè)體)、探究等。不是由教師直接告訴學(xué)生應(yīng)當(dāng)如何去解決面臨的問題,而是由教師向?qū)W生提供解決該問題的有關(guān)線索,并特別注意發(fā)展學(xué)生的“自主學(xué)習(xí)”能力。根據(jù)情況,教師可板演示例。在學(xué)生自主學(xué)習(xí)過程中,遇到不能解決的問題或困難時(shí),引導(dǎo)學(xué)生合作探究,分組討論、交流、協(xié)作學(xué)習(xí),達(dá)到“兵教兵”的目的。通過不同觀點(diǎn)的交鋒、補(bǔ)充、修正,加深每個(gè)學(xué)生對(duì)當(dāng)前問題的理解。為了培養(yǎng)學(xué)生的協(xié)作能力,可以要求小組共同完成一項(xiàng)任務(wù)。比如我在講授“集合”這節(jié)內(nèi)容時(shí),將學(xué)生分成4個(gè)小組(每組10人),讓每個(gè)小組單獨(dú)完成集合概念這節(jié)內(nèi)容時(shí)。實(shí)行各小組間競(jìng)爭(zhēng),小組內(nèi)成員分工協(xié)作的機(jī)制。

基礎(chǔ)知識(shí)。

數(shù)學(xué)中的“集合”概念并不是體育課上體育老師所用的動(dòng)詞意義下的概念,而是一個(gè)名詞性質(zhì)的概念,同學(xué)們?cè)隗w育老師的集合號(hào)令下形成的整體即是數(shù)學(xué)中的集合的涵義。

集合與元素。

師:現(xiàn)在請(qǐng)大家想想除課本上已提到的初中數(shù)學(xué)中的一些數(shù)或點(diǎn)的集合外,你還接觸過哪些數(shù)或點(diǎn)的集合?

(學(xué)生在教師適當(dāng)?shù)膯l(fā)下,學(xué)生們你一言我一語(yǔ)地回答,教師將答案一一提煉羅列如下。)

(1)正分?jǐn)?shù)集合與負(fù)分?jǐn)?shù)集合。

(2)角平分線是到角的兩邊的距離相等的所有點(diǎn)的集合。

(3)線段垂直平分線是和線段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。

第4篇:集合概念教學(xué)反思范文

一、營(yíng)造數(shù)學(xué)氛圍,激發(fā)參與興趣

從學(xué)生熟悉知曉的生活實(shí)例入手,引導(dǎo)學(xué)生觀察、分析它們發(fā)生、發(fā)展的過程,從中抓住這些基本事實(shí)中所包含的“數(shù)學(xué)元素”,經(jīng)過歸納、概括,形成數(shù)學(xué)概念,自然激發(fā)學(xué)生參與的興趣。

例如在高中第一節(jié)課《1.1集合的含義及其表示》引入“集合”這一描述性概念時(shí),筆者精心選擇三個(gè)貼近學(xué)生認(rèn)知的生活實(shí)例。

實(shí)例1取自蘇教版教材必修1第一章引言部分。藍(lán)藍(lán)的天空中,一群鳥在歡快地飛翔;茫茫的草原上,一群羊在悠閑地走動(dòng);清清的湖水里,一群魚在自由地游泳;……鳥群、羊群、魚群……都是“同一類對(duì)象匯集在一起”。在此處突出關(guān)鍵字眼“同類”、“匯集”。

實(shí)例2取自蘇教版教材必修1第1.1節(jié)習(xí)題部分的一道閱讀題:一位漁民非常喜歡數(shù)學(xué),但他怎么也想不明白集合的意義,于是,他請(qǐng)教數(shù)學(xué)家:“尊敬的先生,請(qǐng)你告訴我,集合是什么?”由于集合是不定義的概念,數(shù)學(xué)家當(dāng)時(shí)很難回答那位漁民。幾天后,他來(lái)到漁民的船上,看到漁民撒下魚網(wǎng),輕輕一拉,許多魚蝦在網(wǎng)中跳動(dòng)。數(shù)學(xué)家非常激動(dòng),高興地告訴漁民:“這就是集合!”你能理解數(shù)學(xué)家的話嗎?在此處強(qiáng)調(diào)“許多魚蝦在網(wǎng)中跳動(dòng)”,揭示集合中“集”的特征。

實(shí)例3取自高一軍訓(xùn)中的場(chǎng)景。在軍訓(xùn)過程中,教練發(fā)出這樣的指令:“請(qǐng)高一(五)班同學(xué)下午兩點(diǎn)到教室集合”。這里的“集合”是動(dòng)詞,高一(五)班的所有同學(xué)必須都按要求執(zhí)行,在此處指明所新學(xué)的名詞“集合”中元素的確定性。軍訓(xùn)中隊(duì)列經(jīng)常發(fā)生變化,但不改變班級(jí)成員的屬性,進(jìn)而明確“集合”中元素的無(wú)序性。

通過這些熟悉的背景,加上十分感興趣的實(shí)例,創(chuàng)設(shè)了一個(gè)生動(dòng)的學(xué)習(xí)情景,溝通了生活與數(shù)學(xué)的聯(lián)系,不僅激發(fā)學(xué)生參與興趣,而且有益于學(xué)生理解“集合”概念的內(nèi)涵,體現(xiàn)數(shù)學(xué)的本質(zhì)。

二、指導(dǎo)思維方法,提高參與能力

學(xué)生參與學(xué)習(xí)活動(dòng)的形式是多種多樣的,對(duì)于數(shù)學(xué)學(xué)習(xí)來(lái)說(shuō),學(xué)生的思維參與是重要的,也是主要的。調(diào)動(dòng)學(xué)生的思維,使學(xué)生主動(dòng)地思考問題,參與到數(shù)學(xué)活動(dòng)中去,并在參與中領(lǐng)會(huì)數(shù)學(xué)知識(shí),獲得思維的發(fā)展,有利于學(xué)生參與能力的提高。

學(xué)生通過“做數(shù)學(xué)”、參與數(shù)學(xué)活動(dòng)豐富自己的經(jīng)驗(yàn)和體驗(yàn),并用自己的思考方式建構(gòu)的數(shù)學(xué)知識(shí),才是真正理解和掌握知識(shí)。教師的教學(xué)設(shè)計(jì)應(yīng)考慮學(xué)生是否真正置身于數(shù)學(xué)學(xué)習(xí)活動(dòng)中,是否能動(dòng)地參與了數(shù)學(xué)活動(dòng)。通過引導(dǎo)、探索、嘗試、操作、推理等活動(dòng)讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,把學(xué)生所有的感官都調(diào)動(dòng)起來(lái)。

在《三角函數(shù)》學(xué)習(xí)過程中,公式多組,變換多樣。正確掌握三角公式是開展三角研究的前提,教學(xué)中從第一個(gè)公式的接觸到所有公式的掌握,重在體會(huì)公式內(nèi)涵,把握公式推導(dǎo)的來(lái)龍去脈!

教師在引導(dǎo)學(xué)生思考三角公式內(nèi)在聯(lián)系的過程中,應(yīng)強(qiáng)調(diào)公式的核心是“角”。同角三角函數(shù)關(guān)系反映的是單角α三角函數(shù)值之間的聯(lián)系,誘導(dǎo)公式揭示終邊存在一定特殊關(guān)系的角的三角函數(shù)值之間的聯(lián)系,兩角和與差的三角函數(shù)和二倍角的三角函數(shù)豐富了角的組成方式。通過對(duì)“角的關(guān)系”的研究分析,抓住主體對(duì)象,有利于剖析內(nèi)在聯(lián)系。

組織學(xué)生探究三角公式內(nèi)在聯(lián)系的明線,應(yīng)梳理清楚公式推導(dǎo)的來(lái)龍去脈。由任意角的三角函數(shù)的定義推導(dǎo)同角三角函數(shù)關(guān)系,結(jié)合三角函數(shù)線更能生動(dòng)地展示誘導(dǎo)公式的實(shí)質(zhì),通過α-β=α+(-β)將兩角差化歸成兩角和,利用sin(α+β)=cos ( (α+β))將正弦化歸成余弦,二倍角的三角函數(shù)是當(dāng)α=β時(shí)和角的三角函數(shù)的特殊情況。

在教學(xué)安排中,教師從學(xué)生已有的經(jīng)驗(yàn)出發(fā),啟發(fā)引導(dǎo)學(xué)生,自己分析、比較、概括,教師對(duì)學(xué)生思維活動(dòng)給予充分地重視。

三、豐富教學(xué)手段,優(yōu)化參與方式

教師生動(dòng)的語(yǔ)言、整潔的板書、自然大方的教態(tài)、飽滿的熱情,再用自己對(duì)生活和事業(yè)的熱愛去感染學(xué)生,傳遞給學(xué)生積極向上的生活態(tài)度,貼合學(xué)生學(xué)習(xí)喜好,優(yōu)化學(xué)生參與學(xué)習(xí)的方式。

為上好《隨機(jī)事件的概率》這節(jié)課,筆者作了精心的準(zhǔn)備,課前搜集了大量的圖片、視頻等學(xué)習(xí)資源,借助計(jì)算機(jī)、投影等媒體為學(xué)生展示了豐富、直觀、生動(dòng)的信息,創(chuàng)設(shè)了濃厚的學(xué)習(xí)氣氛,激發(fā)了學(xué)生學(xué)習(xí)興趣和數(shù)學(xué)思考;同時(shí)利用Excel的計(jì)算功能和繪圖功能,迅速統(tǒng)計(jì)小組試驗(yàn)所得數(shù)據(jù),準(zhǔn)確繪制頻率折線圖,有效地幫助學(xué)生從數(shù)與形兩方面觀察試驗(yàn)的結(jié)果,為學(xué)生分析、比較、歸納、判斷、概括的數(shù)學(xué)思維活動(dòng)提供較為廣闊的空間,收到較好的效果。

筆者在教學(xué)中設(shè)計(jì)了實(shí)驗(yàn)、游戲、合作、討論等五個(gè)環(huán)節(jié)。第一步由“麥蒂的35秒奇跡”,“杜麗北京奧運(yùn)再奪金”,“石頭、剪刀、布”三個(gè)隨機(jī)事件發(fā)生的可能性有大小之分的現(xiàn)象,引發(fā)學(xué)習(xí)概率的必要;第二步通過計(jì)算三分球的命中率,引導(dǎo)學(xué)生討論,得到可以利用試驗(yàn)得到的頻率來(lái)估計(jì)隨機(jī)事件概率的猜想;第三步通過學(xué)生動(dòng)手做數(shù)學(xué)實(shí)驗(yàn)“研究隨機(jī)拋擲一枚牙簽與平行線的交點(diǎn)的概率”,經(jīng)過分組數(shù)據(jù)和累積數(shù)據(jù)的統(tǒng)計(jì)分析,觀察頻率的折線圖,體會(huì)大量重復(fù)試驗(yàn)的頻率的穩(wěn)定性,認(rèn)同可以用頻率估計(jì)概率事實(shí);第四步給出概率的統(tǒng)計(jì)定義;第五步利用正、反事例的辨析深化理解定義。這五個(gè)環(huán)節(jié)層層遞進(jìn),學(xué)生在實(shí)例分析、動(dòng)手試驗(yàn)、討論交流等一系列的數(shù)學(xué)活動(dòng)過程中,自己發(fā)現(xiàn)并感悟在大量重復(fù)試驗(yàn)中,隨著試驗(yàn)次數(shù)的增加,事件發(fā)生的頻率所呈現(xiàn)的規(guī)律性的基本事實(shí),體會(huì)試驗(yàn)結(jié)果的隨機(jī)性和規(guī)律性之間的關(guān)系,順理成章地形成了概率的統(tǒng)計(jì)定義。

四、加強(qiáng)反思?xì)w納,提升參與效率

反思是學(xué)習(xí)主體自覺地對(duì)自身活動(dòng)和認(rèn)知過程的自我監(jiān)控、自我調(diào)節(jié)和自我評(píng)價(jià)的過程。這一過程可主要從三個(gè)方面來(lái)理解:一是學(xué)生對(duì)自己數(shù)學(xué)活動(dòng)的定向和計(jì)劃;二是學(xué)生在數(shù)學(xué)活動(dòng)中有意識(shí)地檢驗(yàn)和反饋;三是學(xué)生對(duì)自己的數(shù)學(xué)活動(dòng)有意識(shí)地調(diào)節(jié)、矯正和管理。

在《空間兩直線的位置關(guān)系》教學(xué)過程中,學(xué)生的空間觀念剛剛建立,還沒有真正形成自覺的認(rèn)識(shí),尤其是在二維平面圖形想象出三維立體效果則更難,所以對(duì)空間直線的概念、性質(zhì)容易產(chǎn)生偏差或誤解。教師給學(xué)生或?qū)W生之間可通過列舉數(shù)量較為充分的特例、反例,為學(xué)生提供參與教學(xué)活動(dòng)的時(shí)間和空間,實(shí)施討論、辨析,通過剖析特例、反例可澄清一些錯(cuò)誤認(rèn)識(shí),有助于學(xué)生對(duì)空間直線位置的正確掌握,并促進(jìn)空間想象能力的培養(yǎng)。

設(shè)計(jì)一:兩直線位置關(guān)系從二維平面遷移到三維空間,要批判地發(fā)展?!巴黄矫鎯?nèi),若ac,bc,則a∥b。”是正確的,去掉“同一平面內(nèi)”則不正確。

設(shè)計(jì)二:在分析兩直線位置關(guān)系時(shí),在原命題判斷基礎(chǔ)上進(jìn)一步構(gòu)造逆命題、否命題等形式進(jìn)行辨別。舉例:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等。變化一:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等。變化二:如果一個(gè)角的兩邊和另一個(gè)角的兩邊不平行,那么這兩個(gè)角不相等。變化三:如果兩個(gè)角相等,那么這兩個(gè)角的兩邊平行。通過這一組命題的判斷,積極反思、加強(qiáng)歸納,大大提升了學(xué)生參與效率。

在多個(gè)形式相似命題的辨析過程中,教師不僅要有意注重引導(dǎo)學(xué)生思考問題、分析問題、反思問題,更要注重研究學(xué)生的思維現(xiàn)狀和最近發(fā)展區(qū),在反思、歸納中提升學(xué)生參與的效率。

把課堂還給學(xué)生,不僅僅是時(shí)間與空間上的概念,要讓學(xué)生真正實(shí)現(xiàn)有效參與,需要教師激發(fā)學(xué)生參與興趣、提高學(xué)生參與能力、不斷優(yōu)化參與方式等,只有這樣才能真正提升學(xué)生參與數(shù)學(xué)學(xué)習(xí)的積極性,讓學(xué)生積極主動(dòng)地參與課堂教學(xué),讓學(xué)生真正做學(xué)習(xí)的主人。

【參考文獻(xiàn)】

[1] 教育部高等教育司. 學(xué)會(huì)學(xué)習(xí)[M]. 北京:教育科學(xué)出版社,2002.

[2] 曾琦. 學(xué)生的參與及其發(fā)展價(jià)值[J]. 學(xué)科教育,2001.

第5篇:集合概念教學(xué)反思范文

一、培養(yǎng)興趣,調(diào)動(dòng)學(xué)生的思維熱情

思維能力的培養(yǎng)與發(fā)展,并不是教師一方可以決定和左右的.?dāng)?shù)學(xué)思維歸根結(jié)底還是學(xué)生一方的主觀意識(shí)領(lǐng)域.只有學(xué)生具有了運(yùn)用數(shù)學(xué)思維的主觀意愿,教師對(duì)于其開展的思維培養(yǎng)才是可行的、有效的.因此,要想有效發(fā)展高中數(shù)學(xué)思維,調(diào)動(dòng)起學(xué)生的思維熱情是教師首先要做的,既要培養(yǎng)學(xué)生良好的思維,也讓學(xué)生輕松地掌握學(xué)習(xí)方法,在快樂中學(xué)習(xí)數(shù)學(xué).“興趣是最好的老師”.在高中數(shù)學(xué)教學(xué)中,通過將教學(xué)內(nèi)容與學(xué)生興趣相靠攏,讓學(xué)生對(duì)于數(shù)學(xué)學(xué)習(xí)產(chǎn)生好奇心和求知欲,都是調(diào)動(dòng)學(xué)生思維熱情、推動(dòng)學(xué)生主動(dòng)思維的有效方式.在教學(xué)設(shè)計(jì)時(shí),教師要在數(shù)學(xué)知識(shí)與學(xué)生興趣之間尋找聯(lián)系,調(diào)動(dòng)學(xué)生的思維熱情.

二、吃透概念,夯實(shí)學(xué)生的思維基礎(chǔ)

數(shù)學(xué)思維的培養(yǎng)在高中數(shù)學(xué)學(xué)習(xí)過程中處于一個(gè)高階的位置.也就是說(shuō),只有將基礎(chǔ)知識(shí)學(xué)懂吃透了,才能談的到思維方法的話題.要想實(shí)現(xiàn)數(shù)學(xué)思維的有效建立,夯實(shí)基礎(chǔ)必不可少.而具體到高中數(shù)學(xué)領(lǐng)域來(lái)講,重要的思維基礎(chǔ)之一便是基本概念.例如,在講“函數(shù)”時(shí),對(duì)于函數(shù)概念,有一句重要的描述:“對(duì)于集合A中的任意一個(gè)元素,在集合B中有唯一確定的元素與之對(duì)應(yīng).”雖然看似簡(jiǎn)單,想理解透徹卻并不容易.我以“蘿卜和坑”的比喻向?qū)W生細(xì)致講解了在這一概念中何為“任意”,何為“唯一”.同時(shí),通過實(shí)際舉例的方式在學(xué)生頭腦中建立起“映射”的思維模式.對(duì)于這一概念的理解直接影響著學(xué)生日后對(duì)于函數(shù)問題的解答,必須從一開始下大力氣夯實(shí).概念如同數(shù)學(xué)學(xué)習(xí)這座高樓大廈的地基,只有把每個(gè)基本概念掌握住,才能準(zhǔn)確地進(jìn)行思考,進(jìn)一步形成完整的數(shù)學(xué)思維.?dāng)?shù)學(xué)思維離不開嚴(yán)謹(jǐn)?shù)倪壿嫞谶@些邏輯關(guān)系的建立過程中,相關(guān)概念的內(nèi)涵與外延起著至關(guān)重要的作用.

三、解后反思,培養(yǎng)學(xué)生的思維能力

第6篇:集合概念教學(xué)反思范文

關(guān)鍵詞: 數(shù)學(xué)教學(xué) 意外資源 教學(xué)策略 案例分析

葉瀾教授曾說(shuō):“課堂應(yīng)是向未知方向挺進(jìn)的旅程,隨時(shí)都有可能發(fā)現(xiàn)意外的通道和美麗的圖景,而不是一切都必須遵循固定而沒有激情的行程。”在課堂教學(xué)中,隨時(shí)會(huì)發(fā)生一些教師事先沒有預(yù)料到的“意外”,從而打亂教師的教學(xué)思路。對(duì)課堂的“意外”,有的教師可能會(huì)視而不見,不予理睬,也有的會(huì)冷嘲熱諷,批評(píng)指責(zé),這些都違背了新課程理念。因此,教師在教學(xué)中要及時(shí)捕捉這些“意外”中的“生成點(diǎn)”,抓住各種有價(jià)值的“意外”資源,引導(dǎo)學(xué)生去探索、去研究,促進(jìn)課堂有效生成。

案例1:一位教師在“子集的概念”的教學(xué)中,當(dāng)引進(jìn)子集的概念和符號(hào)表示后,通過分析關(guān)系式{平行四邊形}?勱{矩形}強(qiáng)化“子集”的概念時(shí),突然一位學(xué)生站了起來(lái)。

學(xué)生:老師,您講得不對(duì),應(yīng)該反過來(lái),平行四邊形的集合是矩形的集合的子集。

(舉座嘩然!大家驚愕……想必學(xué)生有自己的想法,教師遂決定讓學(xué)生說(shuō)下去。)

教師(親切地):哦,說(shuō)說(shuō)你的理由。

學(xué)生:因?yàn)榫匦尉邆涞男再|(zhì)平行四邊形不一定具備,但平行四邊形具備的性質(zhì)矩形都具備,所以平行四邊形的集合是矩形的集合的子集。

(學(xué)生的回答是錯(cuò)的,但顯然學(xué)生動(dòng)腦思考了,是直接否定還是借機(jī)發(fā)揮教師選擇了后者。)

教師(肯定地):這位同學(xué)敢于發(fā)表自己的見解,值得表?yè)P(yáng)。究竟是對(duì)是錯(cuò),請(qǐng)同學(xué)們思考討論。

(思考交流開始了……問題得到了很好的解決。)

教學(xué)隨想:案例中,該學(xué)生把集合的元素(對(duì)象)搞錯(cuò)了――出現(xiàn)“意外”,教師善待“意外”,深化了學(xué)生對(duì)“集合”“元素”“子集”的認(rèn)識(shí)――這正是本節(jié)課的目標(biāo)之一。盡管這樣的活動(dòng)過程是即時(shí)的,“意外”的,可能會(huì)耽誤“既定的教學(xué)計(jì)劃”的執(zhí)行,但教學(xué)的針對(duì)性強(qiáng)了。數(shù)學(xué)活動(dòng)觸及了學(xué)生的“興奮點(diǎn)”,學(xué)生的數(shù)學(xué)思維活躍了,既保護(hù)了學(xué)生的自尊心、自信心和學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生善于交流表達(dá)的學(xué)習(xí)習(xí)慣,又及時(shí)發(fā)現(xiàn)了問題,解決了問題,何樂而不為呢?

然后,筆者組織學(xué)生觀察數(shù)列各自特點(diǎn)、共同特點(diǎn),再讓學(xué)生根據(jù)共同特點(diǎn)抽象概括出等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫等差數(shù)列的公差,公差通常用字母d表示。一切都很順利,筆者正準(zhǔn)備進(jìn)入教學(xué)的下一環(huán)節(jié)時(shí),突然生1舉手,提出問題。此刻,筆者一怔,應(yīng)該講得很清楚了啊,怎么還有問題呢?暗地里想,可能學(xué)生的問題很“幼稚”,但為了不挫傷學(xué)生的積極性,筆者還是讓生1提出自己的問題。

學(xué)生1:定義中為什么是后一項(xiàng)與它的前一項(xiàng)的差,而不是前一項(xiàng)與它的后一項(xiàng)的差呢?

教師(如釋重負(fù),面帶微笑):同學(xué)們很愛動(dòng)腦筋,敢于質(zhì)疑,也很聰明,經(jīng)過群策群力解決了問題,用自己的方式定義了等差數(shù)列,很了不起!同學(xué)們,你們?cè)俦容^一下你們的定義和教材上的定義,哪個(gè)更簡(jiǎn)潔?

(學(xué)生經(jīng)過比較討論,都一致認(rèn)同教材上的定義簡(jiǎn)潔,不需要討論有限數(shù)列和無(wú)限數(shù)列的問題。)

教學(xué)隨想:案例中,學(xué)生1突然提出:“定義中為什么是后一項(xiàng)與它的前一項(xiàng)的差,而不是前一項(xiàng)與它的后一項(xiàng)的差呢?”筆者沒有立即否定學(xué)生的說(shuō)法,而是因勢(shì)利導(dǎo),通過師生、生生交流,分析了學(xué)生想法的合理性,通過比較得出了教材定義的簡(jiǎn)潔性。這樣,不僅活躍了課堂氣氛,而且使學(xué)生深刻理解了定義的本質(zhì)含義,提高了課堂教學(xué)的有效性。

教師:剛才我發(fā)現(xiàn)學(xué)生4在下面反思,提出了一個(gè)問題:“如果換成5本書如何處理。”這種不滿足于對(duì)現(xiàn)成的問題的解答、善于進(jìn)一步思考的精神值得學(xué)習(xí)。如果大家都學(xué)會(huì)對(duì)問題進(jìn)行變式探究,就能收到舉一反三、以少勝多的效果。我非常歡迎同學(xué)們對(duì)一些例題進(jìn)行改編,提出自己的思考。下面看看誰(shuí)能回答學(xué)生4提出的問題?

在筆者的引導(dǎo)下,學(xué)生首先處理了“5本書問題”,接著又對(duì)原題進(jìn)行了一些改編并作出了解答。課堂上,學(xué)生的思維非?;钴S,提出了很多問題:“4本不同的書給甲、乙、丙3人,有多少種不同情況?”“4本相同的書給甲、乙、丙3人,每人至少1本,有多少種不同情況?”“4本相同的書給甲、乙、丙3人,有多少種不同情況?”“5本不同的書給甲、乙、丙3人,其中2人每人2本,另1人1本,有多少種不同情況?”……有些問題的方法他們學(xué)過了,能解決。有些問題學(xué)生雖然提出來(lái)了,但是他們?nèi)狈ο鄳?yīng)的知識(shí)儲(chǔ)備,所以筆者讓他們記下來(lái),等本章內(nèi)容學(xué)完了,再拿出來(lái)看看能不能解決。

教學(xué)隨想:案例中教師巧妙地利用和發(fā)揮“意外”的教學(xué)資源,組織學(xué)生思維對(duì)話,因?yàn)橛薪處煂?duì)學(xué)生在課堂教學(xué)中質(zhì)疑、拓展的呵護(hù)和肯定,也因?yàn)閷W(xué)生對(duì)知識(shí)的交流與反思,學(xué)生從真正意義上感知并體驗(yàn)了問題的本質(zhì),同時(shí)也培養(yǎng)了自我反思、相互交流、彼此評(píng)判的方法與能力,使課堂因及時(shí)利用意外資源而精彩生成。

第7篇:集合概念教學(xué)反思范文

關(guān)鍵詞 高中數(shù)學(xué);互動(dòng)啟研式;教學(xué)法

我們知道,在高中數(shù)學(xué)的教學(xué)過程中,由于課時(shí)比較緊、教學(xué)的進(jìn)度比較快,因此,老師大多采用講演式的授課方式,實(shí)際研究發(fā)現(xiàn),這種教學(xué)方式不利于培養(yǎng)學(xué)生們的學(xué)習(xí)能力,為了能夠解決高中數(shù)學(xué)教學(xué)方法和教學(xué)任務(wù)之間不適應(yīng)的問題,我們開始研究互動(dòng)啟研式的教學(xué)方法,進(jìn)而推動(dòng)高中數(shù)學(xué)教學(xué)方法的改革。

一、互動(dòng)啟研式教學(xué)法的定義

所謂的互動(dòng)啟研式教學(xué)法主要是指老師在實(shí)際的教學(xué)過程中,不斷地向?qū)W生們提出數(shù)學(xué)問題,不斷地進(jìn)行情境的創(chuàng)設(shè),進(jìn)而引導(dǎo)學(xué)生探索、研究新的數(shù)學(xué)知識(shí),積極而又主動(dòng)地實(shí)施再創(chuàng)造以及再發(fā)現(xiàn)的思維學(xué)習(xí)活動(dòng),最后實(shí)現(xiàn)獲得新知識(shí)、培養(yǎng)學(xué)習(xí)能力的目的。

上述所說(shuō)的探索與研究的過程,并不是通過討論方式進(jìn)行的,而是學(xué)生們?cè)诶蠋煹囊龑?dǎo)下,緊跟老師的授課思維,對(duì)老師提出的問題進(jìn)行層層剖析,利用綜合、分析、演繹以及歸納等心理過程,探索新的知積、培養(yǎng)新的能力。

互動(dòng)啟研式教學(xué)法與傳統(tǒng)的講演式教學(xué)法不同之處在于:一、利用這種方法進(jìn)行授課時(shí),并不是老師說(shuō)給學(xué)生聽,而是老師先為學(xué)生創(chuàng)設(shè)一定的學(xué)習(xí)情境,幫助學(xué)生融入學(xué)習(xí)的角色中,然后在一起進(jìn)行探索與研究;二、這種方法并不是對(duì)事物進(jìn)行直接地分析、說(shuō)明以及論證,而是先提出一些問題,通過解決這些問題,進(jìn)而實(shí)現(xiàn)知識(shí)的講授過程,因此我們說(shuō),問題屬于互動(dòng)啟研式教學(xué)法的生命。

二、互動(dòng)啟研式教學(xué)法的實(shí)施條件

1.教學(xué)內(nèi)容方面的條件

通常情況下,互動(dòng)啟研式教學(xué)法對(duì)教學(xué)內(nèi)容具有如下的要求:一是,確保教學(xué)內(nèi)容有利于學(xué)生思維的發(fā)展,尤其需要蘊(yùn)含有比較深刻的數(shù)學(xué)思想;二是,確保教學(xué)內(nèi)容和學(xué)生們?cè)械闹R(shí)以及經(jīng)驗(yàn)之間存在一定程度的聯(lián)系,進(jìn)而有利于新舊知識(shí)間的融合;三是,確保教學(xué)內(nèi)容存在一定程度的挑戰(zhàn)性,我們知道,如果教學(xué)內(nèi)容過于簡(jiǎn)單,則無(wú)法吸引學(xué)生們的研究興趣,相反,如果教學(xué)內(nèi)容過于復(fù)雜,則無(wú)法實(shí)現(xiàn)研究目的。

2.授課老師方面的條件

我們知道,老師是教學(xué)過程和教學(xué)方法的組織者、實(shí)施者、運(yùn)用者,因此,老師所具有的觀念與行為,對(duì)于教學(xué)方法的運(yùn)用效果來(lái)說(shuō)具有重要的影響力?;?dòng)啟研式教學(xué)法對(duì)授課老師具有如下要求:一是,需要樹立起新型的師生觀念,尊重學(xué)生們的主體學(xué)習(xí)地位,在老師與學(xué)生之間建立民主、平等的關(guān)系,重視學(xué)生們的整體發(fā)展;二是,理解學(xué)生、尊重學(xué)生,明白到學(xué)生才是學(xué)習(xí)過程的主體,老師只有了解到學(xué)生們的未知、未有以及未能,掌握學(xué)生們的學(xué)習(xí)動(dòng)機(jī)、認(rèn)知程度以及接受能力,才能對(duì)學(xué)生進(jìn)行有效地啟發(fā)。

三、互動(dòng)啟研式教學(xué)法的實(shí)施步驟

1.數(shù)學(xué)概念課的互動(dòng)啟研式教學(xué)法

我們知道,概念作為數(shù)學(xué)知識(shí)里面比較普通的形式,其不僅是基本的數(shù)學(xué)內(nèi)容,還是利用邏輯推導(dǎo)公式、定理和性質(zhì)的理論依據(jù),高中數(shù)學(xué)的概念通常具有多元性、抽象性、發(fā)展性等特征。

在講授《集合和函數(shù)概念》內(nèi)容時(shí),可以從以下五個(gè)方面實(shí)施互動(dòng)啟研式教學(xué)法:第一,情景導(dǎo)入,在該環(huán)節(jié)里,老師向?qū)W生們提供大量與集合、函數(shù)概念相關(guān)的材料,創(chuàng)設(shè)出一種適合進(jìn)行情境研究的氛圍,進(jìn)而引導(dǎo)學(xué)生們感知集合和函數(shù)概念;第二,問題的生成,老師對(duì)學(xué)生進(jìn)行啟發(fā)與引導(dǎo),通過師生互動(dòng)等方式形成指向比較明確的集合和函數(shù)問題,進(jìn)一步地了解集合和函數(shù)概念的內(nèi)涵;第三,互動(dòng)探究,組織活動(dòng)讓學(xué)生們進(jìn)行交流,通過對(duì)問題進(jìn)行多層面以及多角度的補(bǔ)充、修正,使認(rèn)識(shí)變得越來(lái)越清晰;第四,提煉深化,引導(dǎo)學(xué)生們對(duì)集合和函數(shù)概念進(jìn)行進(jìn)一步地思考、辨析和感悟,確保學(xué)生們能夠在思索過程中構(gòu)建以及擴(kuò)充自己所掌握的知識(shí)體系;第五,運(yùn)用鞏固,通過一定程度的課堂練習(xí),使學(xué)生們?cè)谶\(yùn)用集合和函數(shù)概念的過程中,鞏固學(xué)到的概念內(nèi)容。

2.測(cè)試講評(píng)課的互動(dòng)啟研式教學(xué)法

在講授《函數(shù)的應(yīng)用》這一章的測(cè)驗(yàn)講評(píng)課時(shí),具有如下五個(gè)互動(dòng)啟研式教學(xué)環(huán)節(jié):第一,合作糾錯(cuò),把學(xué)生們的考卷和相應(yīng)的答案都發(fā)放下去,讓他們先進(jìn)行獨(dú)立思考以及同學(xué)之間的合作,解決試卷上的函數(shù)應(yīng)用的一般性錯(cuò)誤;第二,問題的生成,老師將復(fù)雜、典型、疑難的函數(shù)應(yīng)用問題做好統(tǒng)計(jì),作為課堂講評(píng)的重點(diǎn)內(nèi)容;第三,互動(dòng)探究,在函數(shù)的應(yīng)用過程中,解決學(xué)生之間共同具有的問題;第四,歸納反思,老師綜合出學(xué)生們做錯(cuò)題目的原因,進(jìn)而引導(dǎo)他們,提升他們的理性高度,使他們充分認(rèn)識(shí)到自己的不足;第五,補(bǔ)償訓(xùn)練,針對(duì)學(xué)生的共同錯(cuò)誤,設(shè)計(jì)一些有關(guān)于函數(shù)應(yīng)用的矯正性習(xí)題,讓學(xué)生們運(yùn)用新知識(shí)和新方法來(lái)解題,進(jìn)而鞏固他們的學(xué)習(xí)效果。

四、結(jié)語(yǔ)

通過上面的敘述我們了解到,互動(dòng)啟研式教學(xué)法有利于解決高中數(shù)學(xué)教學(xué)方法和教學(xué)任務(wù)之間的不適應(yīng)問題,有利于推動(dòng)高中數(shù)學(xué)教學(xué)方法的改革,我們知道,高中數(shù)學(xué)互動(dòng)啟研式教學(xué)法是以傳統(tǒng)意思上的啟發(fā)式教學(xué)作為基礎(chǔ),通過吸收一些現(xiàn)代化的教育思想,將啟發(fā)的目標(biāo)轉(zhuǎn)向受教育的學(xué)生身上,因此,合作與交流,互動(dòng)與生成屬于互動(dòng)啟研式教學(xué)法的實(shí)施方向。

參考文獻(xiàn):

[1]丁國(guó)青.高中數(shù)學(xué)課堂優(yōu)化策略淺見[J].教師,2011(06).

[2]韓飛.淺議新課程背景下的高中數(shù)學(xué)教學(xué)[J].新課程(教研),2010(10).

[3]曾慶龍.新課改下高中數(shù)學(xué)課堂教學(xué)方法初探[J].時(shí)代教育(教育教學(xué)版),2009(04).

第8篇:集合概念教學(xué)反思范文

一.教學(xué)目標(biāo)

1.知識(shí)與技能

(1)理解并掌握正角、負(fù)角、零角的定義.

(2)理解任意角以及象限角的概念.

(3)掌握所有與 角終邊相同的角的表示方法.

2.過程與方法

(1)通過學(xué)習(xí)使學(xué)生會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同的角的集合.

(2)通過學(xué)習(xí)培養(yǎng)學(xué)生的觀察、探索和類比研究的能力;培養(yǎng)學(xué)生的推理能力.

3.情感與態(tài)度

使學(xué)生感悟數(shù)學(xué)與現(xiàn)實(shí)生活是緊密聯(lián)系的,激發(fā)學(xué)生的興趣.

二.教學(xué)重點(diǎn).難點(diǎn)

1.重點(diǎn)

(1)理解正角、負(fù)角和零角的定義.

(2)掌握終邊相同角的表示法.

2.難點(diǎn)

終邊相同的角的表示.

三.教學(xué)過程

(一)創(chuàng)設(shè)情境引入

讓學(xué)生觀察幾種熟悉的變化現(xiàn)象(幻燈片顯示),

問題設(shè)置:牛頓由蘋果落地,發(fā)現(xiàn)了萬(wàn)有引力,你能發(fā)現(xiàn)這些現(xiàn)象共同的變化規(guī)律嗎?

(學(xué)生回答,周期性變化,教師強(qiáng)調(diào):它們的共同的變化規(guī)律是周期性變化,)

教師啟發(fā)性總結(jié):我們即將學(xué)習(xí)的三角函數(shù)就是刻畫這種變化規(guī)律的數(shù)學(xué)模型,

問題設(shè)置:①三角函數(shù)到底是怎樣的一種函數(shù)?

②它有那些特有的性質(zhì)?

③在解決周期性變化規(guī)律中到底發(fā)揮著哪些作用?

教師引導(dǎo):本章我們將研究這些問題,首先開始學(xué)習(xí)第一節(jié)任意角。

(設(shè)計(jì)意圖:學(xué)習(xí)章引言,讓學(xué)生觀察幾種熟悉的變化現(xiàn)象(幻燈片顯示),引導(dǎo)學(xué)生發(fā)現(xiàn)這些現(xiàn)象的變化規(guī)律——周期性變化。激發(fā)學(xué)生想知道數(shù)學(xué)是如何刻畫客觀世界周期性變化規(guī)律的求知欲。闡述本章要學(xué)習(xí)的三角函數(shù)就是刻畫這種周期性變化規(guī)律的數(shù)學(xué)模型,及這一章要研究的內(nèi)容,從而提綱挈領(lǐng),引入課題.)

(二)新課

1.角的有關(guān)概念

(1)回顧角的定義及范圍(請(qǐng)大家回憶一下角的概念?)

角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.角的范圍:0°到360°.

根據(jù)我們了解的角的知識(shí),思考下面三個(gè)問題?

(1)你的手表慢了5分鐘,想將它校準(zhǔn),分針應(yīng)該按什么方向旋轉(zhuǎn)多少度?

(2)你的手表快了5分鐘,想將它校準(zhǔn),分針應(yīng)該按什么方向旋轉(zhuǎn)多少度?

(3)你的手表慢了90分鐘,想將它校準(zhǔn),分針應(yīng)該按什么方向旋轉(zhuǎn)多少度?

教師啟發(fā)性總結(jié):

現(xiàn)實(shí)生活中不僅存在大于360°的角,而且角的旋轉(zhuǎn)方向有兩種(順時(shí)針和逆時(shí)針)。通過跳水的專業(yè)術(shù)語(yǔ)“轉(zhuǎn)體1080°”和“轉(zhuǎn)體540°”以及齒輪旋轉(zhuǎn)的例子(幻燈片顯示),說(shuō)明現(xiàn)實(shí)生活中有很多這樣的例子,要準(zhǔn)確的描述這些變化現(xiàn)象,不僅要知道角的大小,而且要區(qū)分角的旋轉(zhuǎn)方向,就需要對(duì)角的概念進(jìn)行推廣。

問題設(shè)置:那么如何區(qū)分兩種方向不同的角呢?(學(xué)生回答:對(duì)角加正負(fù))

教師引導(dǎo):

一般我們規(guī)定:正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角叫做正角.

問題設(shè)置:那么什么是負(fù)角呢?

負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角叫做負(fù)角.

問題設(shè)置:如果一條射線不作任何旋轉(zhuǎn)呢?

零角:如果一條射線沒有做任何旋轉(zhuǎn),我們稱它為零角.

教師引導(dǎo)深入理解角的概念:

問題1:根據(jù)我們所學(xué)習(xí)的角的知識(shí),求此角的大?。?(出示幻燈片)

(問題比較簡(jiǎn)單,學(xué)生齊答。)

問題2:參照幻燈片上的角,請(qǐng)大家畫出-120°、390°?

(選擇學(xué)生作圖有問題的“作品”,用實(shí)物投影出示,讓學(xué)生點(diǎn)評(píng),從而達(dá)到生生互

動(dòng),最后老師總結(jié)規(guī)范的畫圖步驟,加深印象。)

2.象限角的概念

教師引導(dǎo):今后我們常在坐標(biāo)系中討論角,為了討論問題的方便。我們使角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,角的始邊與 軸的非負(fù)軸重合,角的終邊落在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角.若終邊落在第一象限,這個(gè)角就是第一象限角。那么,第二、三、四象限角就有了。

問題設(shè)置:還有其它角嗎?(學(xué)生回答:終邊落在坐標(biāo)軸上)

教師強(qiáng)調(diào):終邊落在坐標(biāo)軸上的角不屬于任何象限。

教師引導(dǎo)深入理解象限角的概念:

問題1:你能舉一個(gè)第一象限角的例子嗎?(學(xué)生自由發(fā)言,檢測(cè)對(duì)象限角的理解)

問題2: - 是第幾象限角? -120°呢?(學(xué)生齊答,加深對(duì)象限角的理解)

3.終邊相同的角

教師引導(dǎo)探究:請(qǐng)按上述方法在直角坐標(biāo)系內(nèi)畫出 , , ,并找出它們的共同點(diǎn)?

設(shè)計(jì)步驟:

1)讓學(xué)生在黑板上作圖,同學(xué)評(píng)價(jià),老師再次強(qiáng)調(diào)易出現(xiàn)的問題

2)問題設(shè)置:你能發(fā)現(xiàn)這三個(gè)角的共同點(diǎn)嗎?

學(xué)生單獨(dú)回答,教師強(qiáng)調(diào):所有終邊重合的角叫終邊相同的角。

3)問題設(shè)置:你能發(fā)現(xiàn)這三個(gè)角之間的關(guān)系嗎?

學(xué)生單獨(dú)回答,教師強(qiáng)調(diào): 、 分別與 相差360°.

4)問題設(shè)置:(由特殊到一般,由易到難,層層深入)

①你能再舉出兩個(gè)與 終邊相同的兩個(gè)角嗎?

②與 終邊相同的兩個(gè)角有多少個(gè)?

③它們與 的差是多少?

④能否用一個(gè)式子來(lái)表示?

⑤與 終邊的角的集合如何表示?(教師引導(dǎo)學(xué)生,強(qiáng)調(diào) )

⑥與任意角 終邊相同的角的集合怎樣表示?(通過本組問題很自然的引出終邊相同的角的集合表示)

終邊相同的角:所有與角 終邊相同的角,連同角 在內(nèi),可構(gòu)成一個(gè)集合 .

教師總結(jié),出示幻燈片:任一與角 終邊相同的角,都可以表示成角 與整數(shù)個(gè)周角的和.

4.應(yīng)用(運(yùn)用我們這節(jié)課所學(xué)的知識(shí)解決下列問題)

(1)在 到 范圍內(nèi),找出與 和- 終邊相同的角,并判斷它們是第幾象限角?(找學(xué)生單獨(dú)回答)

教師引導(dǎo):是不是任意的一個(gè)角都可以表示為 到 之間的角與整數(shù)個(gè)周角的和?(學(xué)生齊答)也就是說(shuō)任意的一個(gè)角都與 到 之間的一個(gè)角的終邊相同。(教師總結(jié))

(2)用0°到360°的角表示下列集合:

寫出終邊在y軸非負(fù)半軸上的角的集合 .

寫出終邊在y軸非正半軸上的角的集合 .

寫出終邊在 軸上的角的集合 .

( , 讓學(xué)生口頭回答,幻燈片上出示答案。 先讓學(xué)生在紙上作答,然后由學(xué)

生回答,根據(jù)具體回答的情況,教師最后引導(dǎo)總結(jié)出兩種思路:一種是求 , 的并集,一種是根據(jù)定義旋轉(zhuǎn)。)

(3)寫出終邊直線在 上的角的集合 ,并把 中適合不等式的元素 寫出來(lái).

(先讓學(xué)生在紙上寫出集合 ,再寫出適合不等式的元素 .然后由學(xué)生回答,根據(jù)具體回答的情況,教師最后引導(dǎo)總結(jié)出兩種思路:一種是實(shí)驗(yàn)法,一種是解不等式。)

(三)小結(jié):(過渡:下面我們以下三個(gè)方面談?wù)勛约旱氖斋@。)

(設(shè)計(jì)兩套方案:①如果時(shí)間緊,老師與學(xué)生共同總結(jié)知識(shí)點(diǎn),出示幻燈片加深印象;②如果時(shí)間富余,由學(xué)生自由發(fā)言總結(jié)知識(shí)點(diǎn)和思想方法,最后出示幻燈片加深印象。)

1.知識(shí)上:

(1)任意角.

(2)象限角.

(3)終邊相同的角的集合.

2.思想方法上:

由特殊到一般 、聯(lián)想類比等.

3.通過這節(jié)課的學(xué)習(xí),有什么感悟和體會(huì)?

數(shù)學(xué)與現(xiàn)實(shí)生活是緊密聯(lián)系的,我們要善于觀察、聯(lián)想、發(fā)現(xiàn)、總結(jié)、概括.

(設(shè)計(jì)意圖:結(jié)合三維目標(biāo),對(duì)本節(jié)課的內(nèi)容進(jìn)行總結(jié)、反思,幫助學(xué)生建構(gòu)完整的知識(shí)體系。)

(四)布置作業(yè):

1.習(xí)題1.1 A組第1、2、3題.

2.找出日常生活中大于 的角和負(fù)角,并熟練掌握它們的表示方法,深入理解終邊相同的角的特點(diǎn).

附:板書設(shè)計(jì)

任意角

1.正角、負(fù)角、零角

2.象限角

3.所有終邊與任意角α終邊相同的角

(五)教學(xué)反思:

本節(jié)課是三角函數(shù)這一章的第一節(jié)課,是一節(jié)概念課。特點(diǎn)是概念較多,內(nèi)容基本,但比較煩瑣,本節(jié)課主要是讓學(xué)生結(jié)合實(shí)例體驗(yàn)角的概念的推廣的必要性,從運(yùn)動(dòng)的觀點(diǎn)出發(fā)進(jìn)行角的概念的推廣;理解正角、負(fù)角、零角的定義;掌握所有與角 終邊相同的角的表示方法;能建立適當(dāng)?shù)淖鴺?biāo)系來(lái)討論任意角,理解象限角、坐標(biāo)軸上的角的概念,并能用集合和數(shù)學(xué)符號(hào)表示。

我在教學(xué)活動(dòng)中有如下特點(diǎn):

1、介紹了章引言,讓學(xué)生了解本章的基本內(nèi)容,激發(fā)學(xué)生的學(xué)習(xí)興趣.以“設(shè)問”的形式串聯(lián)本節(jié)課,激活學(xué)生的思維。通過生活實(shí)際中所遇到的旋轉(zhuǎn)問題,激發(fā)學(xué)生的好奇心,體會(huì)生活中的數(shù)學(xué),提高學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生自覺探索數(shù)學(xué)問題背后的本質(zhì),體驗(yàn)發(fā)現(xiàn)的樂趣。并且把復(fù)雜問題簡(jiǎn)單化,通過一個(gè)個(gè)細(xì)化的問題引導(dǎo)學(xué)生去發(fā)現(xiàn)問題,總結(jié)問題,最終實(shí)現(xiàn)知識(shí)的領(lǐng)會(huì)。在課堂中,我充分調(diào)動(dòng)學(xué)生的積極性,學(xué)生回答對(duì)了,不吝表?yè)P(yáng)。讓他們有一種成就感,從而激發(fā)學(xué)習(xí)的興趣。

2、學(xué)生的角色從學(xué)習(xí)的承受者轉(zhuǎn)變?yōu)閷W(xué)習(xí)的主體,通過觀察圖片、圖形去發(fā)現(xiàn)隱含在問題當(dāng)中的一般規(guī)律,提高學(xué)生類比聯(lián)想、歸納的能力,變被動(dòng)學(xué)習(xí)為積極主動(dòng)探索。

3、教學(xué)目標(biāo)從講授知識(shí)、落實(shí)雙基提升為知識(shí)、能力、情感等全方位的培養(yǎng)。

第9篇:集合概念教學(xué)反思范文

澳大利亞小學(xué)的學(xué)制一般為“1+6”年,第一年為學(xué)前班學(xué)習(xí)。孩子通常從5歲開始到小學(xué)接受正式教育。小學(xué)里開設(shè)的課程有英語(yǔ)、數(shù)學(xué)、社會(huì)常識(shí)、初級(jí)科學(xué)、音樂、藝術(shù)、體育、衛(wèi)生等,還有一些選修課程。教師主要依據(jù)本州課程標(biāo)準(zhǔn)和學(xué)生的具體情況設(shè)計(jì)教學(xué)。在這里,課本并不是必須的教學(xué)材料。甚至有的學(xué)校還不提倡使用課本。在這些學(xué)校看來(lái),學(xué)生的發(fā)展是不同的,不應(yīng)該用一本課本、一種進(jìn)度和同一要求去約束他們。多數(shù)學(xué)校的教師除了音樂、體育、美術(shù)和第二語(yǔ)言這樣的課程外,什么都教。教學(xué)有趣是小學(xué)教育中最重要的要求之一。教師總是挖空心思把教學(xué)內(nèi)容融在各種有趣的活動(dòng)之中。

蒙特維尤小學(xué)(MountView PrimarySchool)是澳大利亞維多利亞州當(dāng)?shù)匾凰男W(xué)。筆者在這所學(xué)校聽了一節(jié)學(xué)前班的數(shù)學(xué)課,學(xué)習(xí)內(nèi)容是“初步認(rèn)識(shí)10以內(nèi)的數(shù)”。該班有17位學(xué)生,執(zhí)教的女教師畢業(yè)于澳大利亞八校聯(lián)盟校之一的莫納什(Monash)大學(xué)教育系小學(xué)教育專業(yè)。

上課伊始,教師逐次拿出紅色、綠色等不同顏色的紙,讓孩子們辨認(rèn)顏色,并跟讀表示相應(yīng)顏色的英語(yǔ)單詞。老師在紙上并排畫出幾根小棒,邊畫邊讓孩子們數(shù)數(shù)。接著,老師將顏色紙按照3人一組分給孩子們,并交代下一個(gè)活動(dòng)要求:記錄公路上與自己小組的顏色紙色彩相同的過往汽車輛數(shù)。可以按照老師剛才畫豎線的方法在紙上記錄。

孩子們?cè)诶蠋煹膸ьI(lǐng)下,來(lái)到學(xué)校操場(chǎng)圍墻邊。墻外公路上,不時(shí)有汽車從孩子們的面前駛過。孩子們選定合適的觀察位置,貼著圍墻的鐵柵欄,專注地觀察屬于自己小組顏色的車輛,并迅速地記錄。

幾分鐘后,孩子們帶著自己的成果回到教室,席地而坐。在他們的面前是一個(gè)電子白板。

老師開始用電腦動(dòng)畫演示與剛才類式情境:畫面上兩個(gè)孩子正在自家樓上窗口往下點(diǎn)數(shù)馬路上行駛的各色汽車。電子白板上顯示出了一幅方格統(tǒng)計(jì)圖(如圖1):縱軸上標(biāo)自然數(shù),橫軸上的坐標(biāo)用紅色、黃色等不同的汽車圖形代替。

一輛紅色的汽車伴著音樂從統(tǒng)計(jì)圖上方開出。老師問孩子們:“這輛紅色的車該放到哪個(gè)格子里?”幾位孩子舉起了手。一位孩子到屏幕前指示該車應(yīng)放到標(biāo)有“紅色”汽車的格子里。緊接著,統(tǒng)計(jì)圖上方一輛接一輛出現(xiàn)了不同顏色的汽車。在孩子們的指點(diǎn)下,它們被分類放進(jìn)了統(tǒng)計(jì)圖里。老師讓孩子們根據(jù)統(tǒng)計(jì)圖點(diǎn)數(shù)各類汽車輛數(shù),并回答“綠色車多少輛”、“紅色車多少輛”、“最多的是什么顏色的車”、“最少的是什么顏色的車”等問題。

接下來(lái),老師要求同學(xué)們匯報(bào)各組統(tǒng)計(jì)的汽車數(shù)。教師根據(jù)學(xué)生的匯報(bào),按照顏色分類寫出車輛數(shù)。隨后,老師從教具柜里拿出一疊印滿小汽車的圖紙發(fā)給大家,讓孩子們?yōu)檫@些小汽車涂色,所涂顏色和輛數(shù)要與自己小組統(tǒng)計(jì)車輛的顏色、輛數(shù)相同,并把涂好了色的汽車圖剪下來(lái),貼到白紙上(如圖2)。

孩子們起身回到自己課桌邊的坐位上。從桌上的工具盒里拿出剪刀、膠水等常用的學(xué)習(xí)用品,開始專心地涂色、剪紙、貼圖。老師則來(lái)到一位不會(huì)英文的新移民小孩旁坐下,耐心地進(jìn)行個(gè)別輔導(dǎo)。

下課了,孩子們起身,各自把剪貼作品放進(jìn)了屬于自己的作業(yè)盒子里。今天的數(shù)學(xué)課就此結(jié)束。

這節(jié)數(shù)學(xué)課看起來(lái)很隨意,也很好玩。孩子們整節(jié)課圍繞“點(diǎn)數(shù)汽車的輛數(shù)”的問題情境,有序地進(jìn)行一個(gè)又一個(gè)活動(dòng):辨認(rèn)紙張顏色、實(shí)地記錄各種顏色汽車數(shù)量、觀看教學(xué)片學(xué)習(xí)不同顏色汽車數(shù)量的統(tǒng)計(jì)方法、點(diǎn)數(shù)車輛數(shù)并比較多少、匯總各組記錄的數(shù)據(jù)、填充和剪貼與自己實(shí)地記錄的汽車數(shù)相同的汽車圖。孩子們?cè)谶@樣的活動(dòng)“串”中,興致勃勃、輕松自如。

在任課教師看來(lái),數(shù)學(xué)課中語(yǔ)言、數(shù)學(xué)、自主學(xué)習(xí)、好奇心以及各種知識(shí)之間的聯(lián)系都是重要的。這節(jié)看似隨意的數(shù)學(xué)課,實(shí)際體現(xiàn)了教師的教學(xué)理念、設(shè)計(jì)思想和教學(xué)特點(diǎn)。

一、關(guān)注學(xué)生學(xué),創(chuàng)設(shè)貫穿始終的問題情境

從教學(xué)設(shè)計(jì)的角度來(lái)看,這是一節(jié)“以學(xué)生的活動(dòng)為中心”的數(shù)學(xué)課。這類課的基本結(jié)構(gòu)一般是確定教學(xué)目標(biāo)、創(chuàng)設(shè)教學(xué)情境、設(shè)計(jì)與提供信息資源、設(shè)計(jì)自主學(xué)習(xí)策略、設(shè)計(jì)協(xié)作學(xué)習(xí)環(huán)境、評(píng)價(jià)學(xué)習(xí)效果[1]。本節(jié)課,教師以學(xué)生初步學(xué)會(huì)點(diǎn)數(shù)10以內(nèi)數(shù),初步了解10以內(nèi)數(shù)的含義為知識(shí)目標(biāo),創(chuàng)設(shè)了“點(diǎn)數(shù)汽車的輛數(shù)”這樣一個(gè)貫穿教學(xué)始終的數(shù)學(xué)問題情境。并提供了配色彩紙、觀察地點(diǎn)、教學(xué)短片、汽車圖畫、填圖卡紙以及剪紙的工具等學(xué)習(xí)資源與信息素材,為學(xué)生的學(xué)習(xí)提供了有力支持。活動(dòng)過程中,教師設(shè)計(jì)了包括分類(按照顏色分類)、統(tǒng)計(jì)(收集、整理數(shù)據(jù))、數(shù)數(shù)(分類點(diǎn)數(shù)、一一對(duì)應(yīng))等策略,引導(dǎo)學(xué)生自主學(xué)習(xí)。并通過小組合作和教師個(gè)別輔導(dǎo),構(gòu)建協(xié)作學(xué)習(xí)的環(huán)境。通過“按數(shù)找物”的填圖、貼圖活動(dòng),讓孩子們反思自己對(duì)數(shù)及數(shù)學(xué)符號(hào)表達(dá)的含義的初步了解。貫穿始終的問題情境,使孩子們數(shù)學(xué)學(xué)習(xí)的過程,也成為數(shù)學(xué)問題解決的過程,成為數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)的積累過程。

二、關(guān)注數(shù)學(xué)本質(zhì)的滲透,創(chuàng)設(shè)學(xué)習(xí)活動(dòng)“串”

從學(xué)習(xí)的過程來(lái)看,孩子們活動(dòng)的基本線索是分類、收集整理數(shù)據(jù)和數(shù)據(jù)的簡(jiǎn)單分析與表達(dá)。這個(gè)活動(dòng)本質(zhì)上是在為學(xué)生建立自然數(shù)的概念奠基。

(一)通過分類活動(dòng)初步感知集合

我們知道,自然數(shù)起源于數(shù)(shǔ),即一個(gè)一個(gè)地?cái)?shù)東西。由此而產(chǎn)生的用來(lái)表示物體個(gè)數(shù)的數(shù)就叫自然數(shù)[2]。用有限集合的基數(shù)來(lái)解釋自然數(shù),即“自然數(shù)是一類有限的等價(jià)集合的標(biāo)記”,稱為基數(shù)[3]?;鶖?shù)表示集合中元素的個(gè)數(shù),是計(jì)數(shù)的數(shù)。比如,M={a}是一個(gè)集合,所有能和M構(gòu)成一一對(duì)應(yīng)的集合如“一只小鳥”的集合,“一棵樹”的集合,“一個(gè)人”的集合,“一個(gè)班學(xué)生”的集合等,它們都能彼此一一對(duì)應(yīng),是等價(jià)集合。從這樣一類有限的等價(jià)集合中將其共同屬性,即集合中的元素“都是1個(gè)”抽象出來(lái),用數(shù)“1”表示,“1”就是這類等價(jià)集合的標(biāo)記。“1”既可以表示數(shù)量上是1的事物,也可以表示一個(gè)整體。

建立數(shù)概念是非常困難的,人類形成“1”的概念,經(jīng)歷了十萬(wàn)年[4]。學(xué)生經(jīng)歷數(shù)的抽象過程,理解數(shù)的實(shí)際含義,是學(xué)習(xí)數(shù)學(xué)的重要開端。皮亞杰認(rèn)為,數(shù)概念的發(fā)展不會(huì)早于類(分類結(jié)構(gòu))的發(fā)展。分類就是把具有同一屬性的事物構(gòu)成一個(gè)集合。這就是說(shuō),小學(xué)生先有分類形成的集合觀念,然后才能形成自然數(shù)的概念。在本節(jié)課中,教師首先讓學(xué)生辨析顏色紙,并在課外實(shí)地觀察中,以顏色為標(biāo)準(zhǔn)對(duì)過往汽車輛數(shù)進(jìn)行分類統(tǒng)計(jì),使學(xué)生在對(duì)汽車進(jìn)行分類的過程中感知集合:即“相同顏色的汽車”構(gòu)成一個(gè)集合。同時(shí),學(xué)生對(duì)同類汽車一輛一輛進(jìn)行記錄,也可以進(jìn)一步獲得對(duì)集合中元素的個(gè)數(shù)的感知。

(二)通過統(tǒng)計(jì)活動(dòng)初步感知數(shù)的含義

小學(xué)生掌握計(jì)數(shù)(數(shù)數(shù))的過程,是把被數(shù)物體集合的元素與自然數(shù)列中的元素建立一一對(duì)應(yīng)的過程,也是掌握初步數(shù)概念的過程。有研究表明,兒童計(jì)數(shù)的發(fā)展,需要經(jīng)歷“口頭數(shù)數(shù)——按物點(diǎn)數(shù)——說(shuō)出總數(shù)”的過程。兒童從口頭數(shù)數(shù)發(fā)展到按物點(diǎn)數(shù),通常會(huì)經(jīng)歷一個(gè)“手口不一”的過程。而說(shuō)出總數(shù)的發(fā)展晚于按物點(diǎn)數(shù)。計(jì)數(shù)時(shí),只有會(huì)說(shuō)出總數(shù),才標(biāo)志著兒童開始對(duì)數(shù)的實(shí)際意義的理解。本節(jié)課設(shè)計(jì)的利用卡通片去再現(xiàn)實(shí)地統(tǒng)計(jì)汽車輛數(shù)的情境,讓小學(xué)生把多媒體畫面中出現(xiàn)的不同顏色汽車歸類填入統(tǒng)計(jì)圖,并進(jìn)行數(shù)數(shù)練習(xí)和數(shù)量多少的比較,使學(xué)生直觀感知數(shù)的形成(即一個(gè)數(shù)添上1,即得到一個(gè)后繼數(shù)),訓(xùn)練學(xué)生用視覺感知數(shù)目的多少,并進(jìn)一步將口頭點(diǎn)數(shù)發(fā)展到按物點(diǎn)數(shù),然后說(shuō)出總數(shù),培養(yǎng)學(xué)生的數(shù)感和數(shù)數(shù)技能。

(三)用不同方式表征數(shù),滲透數(shù)守恒概念

本節(jié)課的最后一個(gè)活動(dòng),是由各小組成員根據(jù)在實(shí)地觀察活動(dòng)中記錄到的汽車顏色和輛數(shù),在一張畫滿小汽車的圖上涂色,并剪貼在自己的作業(yè)紙上。通過“由形到數(shù),由數(shù)到形”的轉(zhuǎn)化,呈現(xiàn)了數(shù)的不同表征方式(實(shí)物、圖形和數(shù)字符號(hào)等),并滲透了數(shù)守恒的概念。我們知道,學(xué)生在判斷物體數(shù)量時(shí),往往會(huì)受物體大小或排列形式的干擾。這種情況說(shuō)明學(xué)生還沒有數(shù)的守恒的觀念。要排除各種干擾因素,關(guān)注到物體的數(shù)目,這要求學(xué)生能將數(shù)從它的具體對(duì)象的各種外部特征中抽象出來(lái),這需要具有一定的抽象概括能力。皮亞杰認(rèn)為,兒童能否具有數(shù)守恒的能力,是衡量是否具有數(shù)概念的標(biāo)志。教師在教學(xué)設(shè)計(jì)中,讓學(xué)生在觀察、操作活動(dòng)中,感悟汽車排列方式和形狀大小的變化,體會(huì)數(shù)守恒的概念,有意識(shí)地滲透了抽象能力的培養(yǎng)。

有研究認(rèn)為:小學(xué)生初步形成10以內(nèi)數(shù)的概念,有幾個(gè)標(biāo)志:①理解10以內(nèi)數(shù)的實(shí)際意義,包括10以內(nèi)的基數(shù)和序數(shù)的意義,在判斷物體的個(gè)數(shù)時(shí),能不受物體大小、形狀和排列形式的干擾,正確確定物體的數(shù)量(即數(shù)的守恒)。②認(rèn)識(shí)10以內(nèi)數(shù)的相鄰關(guān)系,理解自然數(shù)的順序是固定不變的。③掌握10以內(nèi)數(shù)的組成,初步認(rèn)識(shí)數(shù)的結(jié)構(gòu),初步具有按群計(jì)數(shù)的能力,為學(xué)習(xí)加減法打下基礎(chǔ)[5]。本節(jié)課通過一個(gè)個(gè)主題清晰的數(shù)學(xué)活動(dòng)“串”,把數(shù)學(xué)教學(xué)的基本要求,滲透在了學(xué)生的學(xué)習(xí)活動(dòng)之中。

三、遵循教育原則,體現(xiàn)“現(xiàn)實(shí)數(shù)學(xué)”思想

“現(xiàn)實(shí)數(shù)學(xué)”是荷蘭數(shù)學(xué)教育家弗賴登塔爾的重要數(shù)學(xué)教育原則。他認(rèn)為,“數(shù)學(xué)現(xiàn)實(shí)”是客觀現(xiàn)實(shí)與人們的數(shù)學(xué)認(rèn)識(shí)的統(tǒng)一體,是人們用數(shù)學(xué)概念、數(shù)學(xué)方法對(duì)客觀事物的認(rèn)識(shí)的總體。其中既含有客觀世界的現(xiàn)實(shí)情況,也包括個(gè)人用自己的數(shù)學(xué)水平觀察這些事物所獲得的認(rèn)識(shí)。強(qiáng)調(diào)客觀現(xiàn)實(shí)材料和數(shù)學(xué)知識(shí)兩者密不可分[6]。對(duì)于本節(jié)課而言,小學(xué)生從給定的“點(diǎn)數(shù)汽車的輛數(shù)”的具體情境中,通過分類、統(tǒng)計(jì)、對(duì)應(yīng)(數(shù)與形,數(shù)與物)等方法去感知和建立數(shù)概念,使學(xué)生對(duì)于“數(shù)的認(rèn)識(shí)”與各種“現(xiàn)實(shí)”材料“你中有我,我中有你”,融為一體,較好地體現(xiàn)了“現(xiàn)實(shí)數(shù)學(xué)”的思想。同時(shí),孩子們?cè)谶@些涉及數(shù)學(xué)、美術(shù)、音樂、語(yǔ)言等多領(lǐng)域?qū)W習(xí)以及戶外活動(dòng)、統(tǒng)計(jì)、填圖剪紙等有趣的活動(dòng)中,學(xué)習(xí)數(shù)的有關(guān)知識(shí)。

筆者認(rèn)為,教師精心設(shè)計(jì)有趣的數(shù)學(xué)活動(dòng),讓孩子們?cè)凇巴妗敝袑W(xué)數(shù)學(xué),教學(xué)的著眼點(diǎn)是學(xué)生如何學(xué),而不是教師如何教。教師走進(jìn)兒童學(xué)習(xí)的真實(shí)世界,結(jié)合學(xué)生的實(shí)際,尊重孩子的天性,遵從數(shù)學(xué)的學(xué)科特點(diǎn)和兒童數(shù)學(xué)學(xué)習(xí)的心理發(fā)展規(guī)律而進(jìn)行教學(xué),讓學(xué)生在不斷經(jīng)歷、體驗(yàn)各種數(shù)學(xué)活動(dòng)的過程中,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),建構(gòu)數(shù)學(xué)知識(shí),形成數(shù)學(xué)學(xué)習(xí)的積極態(tài)度,這也許是這節(jié)課給我們的一點(diǎn)啟示。

參考文獻(xiàn):

[1]李士锜,張曉霞,金成梁.小學(xué)數(shù)學(xué)教學(xué)案例分析[M].北京:高等教育出版社,2010:6.

[2]金成梁.小學(xué)數(shù)學(xué)疑難問題研究[M].南京:江蘇教育出版社,2010:1.

[3]張奠宙等.小學(xué)數(shù)學(xué)研究[M].北京:高等教育出版.2008:1.

[4]黃燕,何昕.從“小用”到“大用”——談我們需要什么樣的數(shù)學(xué)[J].人民教育,2011,(16):14-16.

[5]金浩.學(xué)前兒童數(shù)學(xué)教育概論[M]上海:華東師范大學(xué)出版社,2000:172-175.