前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)主題范文,僅供參考,歡迎閱讀并收藏。
關(guān)鍵詞:模糊神經(jīng)網(wǎng)絡(luò);PID;控制系統(tǒng);非線性
中圖分類號(hào):TP183 文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1007-9599 (2011) 20-0000-02
Design of Control System Based on FNN PID
Duan Zhengjun1,Zhao Ran1,Tian Wenxue2
(1.TISCO Stainless Steel Pipe company,Taiyuan030000,China;2. China Chemical Engineering Second Construction Corporation,Taiyuan030000,China)
Abstract:At present,many of intelligent algorithm apply to the non-linear control system,it is intelligent control systems,for example,neural network,fuzzy control.According to the neural networks and fuzzy control in this article,introduced design principles and implementation based on neural nerwork and PID algorithm.
Keywords:Fuzzy neural network;PID;Control System;Nonlinear
一、引言
模糊神經(jīng)網(wǎng)絡(luò)(FNN)是模糊邏輯控制和神經(jīng)網(wǎng)絡(luò)兩者結(jié)合的產(chǎn)物。模糊邏輯控制和神經(jīng)網(wǎng)絡(luò)兩者單獨(dú)使用時(shí)候,都會(huì)有一定的缺陷。模糊邏輯在一定的論域上面有很好的收斂性,在進(jìn)行模糊量的運(yùn)算上有優(yōu)勢(shì);而神經(jīng)網(wǎng)絡(luò)具有強(qiáng)的自學(xué)習(xí)、自適應(yīng)、并行運(yùn)算和精確計(jì)算的能力。因此,兩者結(jié)合可以優(yōu)勢(shì)互補(bǔ),從而很大提高綜合能力。FNN-PID是將模糊神經(jīng)網(wǎng)絡(luò)融進(jìn)PID算法中,實(shí)現(xiàn)二者結(jié)合。FNN-PID算法具有PID控制器優(yōu)點(diǎn)、模糊控制的良好收斂性和對(duì)模糊量的運(yùn)算優(yōu)勢(shì),也有神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)、自適應(yīng)的特性。
二、FNN系統(tǒng)結(jié)構(gòu)
FNN具有很多種結(jié)構(gòu)和算法,對(duì)于不同的控制對(duì)象,在綜合考慮運(yùn)算速度和精度的情況下,可以使模糊神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)有所不同。本文模糊神經(jīng)網(wǎng)絡(luò)采用如圖1的結(jié)構(gòu),兩個(gè)輸入變量是有 、 ,為誤差E與誤差變化量EC。輸出變量為Y,為PID三要素中的一個(gè)。根據(jù)專家經(jīng)驗(yàn)知識(shí)把每個(gè)輸入因子分為(NM,NS,ZO,PS,PM)五個(gè)模糊狀態(tài)記為T[ ]。
圖1.模糊神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)
第一層至第三層是實(shí)現(xiàn)模糊控制規(guī)則,第四層去除模糊化并實(shí)現(xiàn)輸出實(shí)際控制對(duì)象的值,每層的作用如下:
第一層為輸入層,該層的節(jié)點(diǎn)直接與輸入層相連,起著將輸入向量X傳送到下一層的作用,其節(jié)點(diǎn)個(gè)數(shù)等于輸入變量個(gè)數(shù)。輸入輸出關(guān)系可表示為:
, i=1,2(1)
第二層為隸屬函數(shù)層,其作用是計(jì)算輸入量屬于各語言變量值模糊集合的隸屬函數(shù)值,節(jié)點(diǎn)個(gè)數(shù) ,每個(gè)節(jié)點(diǎn)代表一個(gè)模糊集合,可表示為:
, j=1,2,3(2)
式中j―― 的模糊分割數(shù), 、 ――高斯函數(shù)中第j個(gè)輸入對(duì)第i個(gè)結(jié)點(diǎn)的中心和寬度。
第三層為模糊規(guī)則層,每個(gè)節(jié)點(diǎn)代表一條模糊規(guī)則。采用IF-THEN模糊規(guī)則,可表示為:
:If is and is and…is THEN Yis(3)
式中,1≤n≤2,1≤i≤3: (4)
第四層為輸出層: (5)
三、FNN的學(xué)習(xí)算法及步驟
在學(xué)習(xí)方法上,我們選擇在線學(xué)習(xí),在線學(xué)習(xí)就是針對(duì)整個(gè)訓(xùn)練集的每一個(gè)輸入和對(duì)應(yīng)的輸出要求,每學(xué)習(xí)一條規(guī)則,就進(jìn)行一次連接權(quán)的調(diào)整;這樣一輪一輪不斷的自動(dòng)的調(diào)整網(wǎng)絡(luò)連接權(quán),知道整個(gè)網(wǎng)絡(luò)達(dá)到所有的要求的響應(yīng)為止。學(xué)習(xí)目的是對(duì)產(chǎn)生樣本規(guī)律的統(tǒng)計(jì)特性進(jìn)行建模,從具體觀測(cè)推測(cè)隱含的規(guī)律,輸出結(jié)果與樣本接近。為了提高測(cè)量的精度,要求 、 和 三個(gè)參數(shù)能夠適應(yīng)環(huán)境的變化,即可實(shí)時(shí)調(diào)節(jié)高斯隸屬函數(shù)和連接第三、第四層的權(quán)重比。具體算法如下:
式(5)可以按下式表示:(6)
設(shè) , , ,從而得到式(6)的簡化形式為: ,由式子(6)和式子(7)得到(8)式:
(9)
(10)
定義輸出誤差為: (11),其中 ――k時(shí)刻的輸出值, ――k時(shí)刻的輸出期望值。
定義系統(tǒng)的性能指標(biāo)為:(12)
采用反方向傳播方法進(jìn)行監(jiān)督學(xué)習(xí),使性能指標(biāo)E值最小化。根據(jù)梯度下降方法有:
以上式子分別為(13),(14),(15)。其中 為學(xué)習(xí)速度,由于采用在線學(xué)習(xí),那么 為一個(gè)定值。根據(jù)性能指標(biāo)選取規(guī)則和專家經(jīng)驗(yàn)知識(shí),取終止條件為E≤0.005,具體的學(xué)習(xí)步驟如下:
步驟1: 、 、 及 的初始值在[0,1]之間隨機(jī)選取, 的值為恒定值,根據(jù)經(jīng)驗(yàn)決定。
步驟2:根據(jù)式子(11),(13),(14),(15)計(jì)算得出比較理想的 , , 值。
步驟3:根據(jù)式子(12)計(jì)算E,若E≤0.002,迭代結(jié)束。否則,令 , , 為初始值并返回步驟2。
四、PID-FNN系統(tǒng)的設(shè)計(jì)及實(shí)現(xiàn)
根據(jù)FNN結(jié)構(gòu)可知,輸入是誤差和誤差變化量,輸出是PID控制參數(shù)中的一個(gè),故我們?cè)O(shè)計(jì)PID-FNN系統(tǒng)時(shí)要使用3個(gè)FNN,選擇這樣的FNN結(jié)構(gòu)是為了更加精確的得到PID所需要的修正值。當(dāng)然,這里所用的FNN是已經(jīng)結(jié)束學(xué)習(xí)過程的。PID-FNN控制系統(tǒng)的具體結(jié)構(gòu)如圖2所示。
PID-FNN系統(tǒng)具體實(shí)現(xiàn)過程如下:①根據(jù)FNN的學(xué)習(xí)算法,通過提供的樣本對(duì)FNN-Kp、FNN-Ki和FNN-Kd進(jìn)行訓(xùn)練,使其得到合適的權(quán)值,滿足性能指標(biāo)為止。②誤差和誤差變化量做歸一化處理,作為FNN-Kp、FNN-Ki和FNN-Kd的輸入。③根據(jù)式子(1)(2)(4)(5)計(jì)算FNN的各層的輸出,F(xiàn)NN-Kp、FNN-Ki和FNN-Kd最后一層的輸出就是PID控制參數(shù)Kp、Ki和Kd的修正值。④利用③中得到的修正值,對(duì)經(jīng)典PID控制器所得出的Kp、Ki和Kd的值進(jìn)行修正。⑤Kp、Ki和Kd的修正后的值傳送給控制對(duì)象,并由圖2中所示,控制結(jié)果反饋回到計(jì)算誤差處進(jìn)行誤差計(jì)算。由此跳轉(zhuǎn)到②步。
圖2.FNN-PID系統(tǒng)結(jié)構(gòu)
五、結(jié)束語
FNN融合了模糊控制和神經(jīng)網(wǎng)絡(luò)的特點(diǎn),本文利用這一點(diǎn)設(shè)計(jì)了PID-FNN控制系統(tǒng)并予以實(shí)現(xiàn)。文章中介紹了FNN的系統(tǒng)結(jié)構(gòu)和學(xué)習(xí)過程的算法以及步驟,然后設(shè)計(jì)了PID-FNN的系統(tǒng)結(jié)構(gòu),并且描述了具體的實(shí)現(xiàn)過程。
本文作者創(chuàng)新點(diǎn):模糊神經(jīng)網(wǎng)絡(luò)(FNN)是模糊邏輯控制和神經(jīng)網(wǎng)絡(luò)兩者結(jié)合的產(chǎn)物。兩者結(jié)合可以優(yōu)勢(shì)互補(bǔ),從而很大提高綜合能力。從而能夠更迅速、更精確的對(duì)PID參數(shù)進(jìn)行修正,已達(dá)到最佳的控制狀態(tài)。
參考文獻(xiàn):
[1]李士勇.模糊控制,神經(jīng)控制和智能控制論[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,1996
[2]曾黃麟.智能計(jì)算[M].重慶:重慶大學(xué)出版社,2004
[3]晁勤,傅成華.自動(dòng)控制原理[M].重慶:重慶大學(xué)出版社,2005
[4]武嘉.輔助控制系統(tǒng)設(shè)計(jì)與仿真[M].北京:電子工業(yè)出版社,2005
論文關(guān)鍵詞:內(nèi)燃機(jī) 人工神經(jīng)網(wǎng)絡(luò) 輔助方法
論文摘要:針對(duì)汽車發(fā)動(dòng)機(jī)設(shè)計(jì)和性能評(píng)測(cè)當(dāng)中有關(guān)參數(shù)計(jì)算的特點(diǎn),提出應(yīng)用人工神經(jīng)網(wǎng)絡(luò)方法進(jìn)行輔助計(jì)算,以提高數(shù)據(jù)計(jì)算的結(jié)構(gòu)化程度和處理速度。通過對(duì)具體數(shù)據(jù)的實(shí)際操作表明,應(yīng)用本方法能夠很好地表達(dá)原圖表數(shù)據(jù)關(guān)系,所得結(jié)果的精度能夠滿足計(jì)算要求。
汽車發(fā)動(dòng)機(jī)的性能包括動(dòng)力性、經(jīng)濟(jì)性、生態(tài)特性——排放與噪聲、可靠性及耐久性等多個(gè)方面,這些參數(shù)要通過在一定條件下的測(cè)試計(jì)算來獲得。當(dāng)發(fā)動(dòng)機(jī)在非標(biāo)準(zhǔn)環(huán)境下運(yùn)轉(zhuǎn)時(shí),其相關(guān)計(jì)算要通過參數(shù)進(jìn)行修正,比如發(fā)動(dòng)機(jī)的有效功率和燃油消耗率的計(jì)算。當(dāng)發(fā)動(dòng)機(jī)在非標(biāo)準(zhǔn)環(huán)境下運(yùn)轉(zhuǎn)時(shí),其有效功率及燃油消耗率應(yīng)修正到標(biāo)準(zhǔn)環(huán)境狀況,當(dāng)然也可由標(biāo)準(zhǔn)環(huán)境狀況修正到現(xiàn)場(chǎng)環(huán)境狀況,其中的有效功率和燃油消耗率修正系數(shù)在GB1105..1-87中以圖表的形式給出,使用很不方便,本文應(yīng)用人工神經(jīng)網(wǎng)絡(luò)對(duì)此圖表信息進(jìn)行處理,提高了數(shù)據(jù)計(jì)算的結(jié)構(gòu)化程度和處理速度,取得了滿意的效果。
1.神經(jīng)網(wǎng)絡(luò)的識(shí)別原理
在神經(jīng)網(wǎng)絡(luò)系統(tǒng)中,其知識(shí)是以大量神經(jīng)元的互連和各連接的權(quán)值來表示的.神經(jīng)網(wǎng)絡(luò)映射辯識(shí)方法主要通過大量的樣本進(jìn)行訓(xùn)練,經(jīng)過網(wǎng)絡(luò)內(nèi)部自適應(yīng)算法不斷調(diào)整其權(quán)值,以達(dá)到目的.狀態(tài)識(shí)別器就隱含在網(wǎng)絡(luò)中,具體就在互連形式與權(quán)值上.在網(wǎng)絡(luò)的使用過程中,對(duì)于特定的輸入模式,神經(jīng)網(wǎng)絡(luò)通過前向計(jì)算,產(chǎn)生一輸出模式,通過對(duì)輸出信號(hào)的比較和分析可以得出特定解。目前神經(jīng)網(wǎng)絡(luò)有近40多種類型,其中BP(Back Propagation,即反向傳播)網(wǎng)絡(luò)是最常用和比較重要的網(wǎng)絡(luò)之一,本文就應(yīng)用一種改進(jìn)型的BP網(wǎng)絡(luò)進(jìn)行相應(yīng)數(shù)據(jù)圖表的識(shí)別映射。
BP網(wǎng)絡(luò)由輸入結(jié)點(diǎn)、輸出層結(jié)點(diǎn)和隱層結(jié)點(diǎn)構(gòu)成,相連層用全互連結(jié)構(gòu).神經(jīng)網(wǎng)絡(luò)的工作過程主要有兩個(gè)階段:一個(gè)是學(xué)習(xí)期,通過樣本學(xué)習(xí)修改各權(quán)值,達(dá)到一穩(wěn)定狀態(tài);一個(gè)是工作期,權(quán)值不變,計(jì)算網(wǎng)絡(luò)輸出。
B
P網(wǎng)絡(luò)的學(xué)習(xí)過程由正向傳播和反向傳播兩部分組成。在正向傳播過程中,輸入信息從輸入層經(jīng)隱層單元逐層處理,并傳向輸出層,每一層神經(jīng)元的狀態(tài)只影響下一層神經(jīng)元的狀態(tài)。如果在輸出層不能得到期望的輸出,則轉(zhuǎn)入反向傳播,將誤差信號(hào)沿原來的路徑返回,通過修改各層神經(jīng)元的權(quán)值,使得誤差信號(hào)最小。
當(dāng)給定一輸入模式X=(x1,x2,….,xm)和希望輸出模式Y(jié)=(y1,y2,…..,yn)時(shí),網(wǎng)絡(luò)的實(shí)際輸出和輸出誤差可用下列公式求出:
隱含層輸出:
式中——輸入層至隱含層,隱含層至輸出層的連接權(quán);
——隱含層結(jié)點(diǎn)、輸出層結(jié)點(diǎn)的閥值;
m、h、n——輸入層、隱含層、輸出層結(jié)點(diǎn)數(shù);
f—— s型函數(shù),f(x)=(1+e-x)-1.
如果誤差太大不能滿足要求,則需要用下列公式修正各連接權(quán)和閥值
為網(wǎng)絡(luò)提供一組特定的訓(xùn)練模式,隨機(jī)產(chǎn)生初始連接權(quán)和閥值,不斷幣復(fù)上述計(jì)算過程,直到網(wǎng)絡(luò)全局誤差小于給定的極小值為止.
由于BP網(wǎng)絡(luò)的高識(shí)別能力,應(yīng)用中采用了此結(jié)構(gòu)形式.同時(shí)為提高其識(shí)別效果,加快網(wǎng)絡(luò)的訓(xùn)練速度,縮短工作周期,應(yīng)用了附加動(dòng)量項(xiàng)和自適應(yīng)速率的改進(jìn)算法.
附加動(dòng)量項(xiàng)法使網(wǎng)絡(luò)在修正其權(quán)值時(shí),不僅考慮誤差在梯度上的作用,而且考慮在誤差曲面上變化趨勢(shì)的影響,其作用如同一個(gè)低通濾波器,允許網(wǎng)絡(luò)上的微小變化特性,使網(wǎng)絡(luò)陷入局部極小值的可能性大大減少。自適應(yīng)速率是通過改變學(xué)習(xí)率,提高BP算法的有效性和收斂性,縮短訓(xùn)練時(shí)間.
2具體應(yīng)用
根據(jù)以上理論,采用改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)形式,動(dòng)量因子取0.9,對(duì)有效功率校正系數(shù)和燃油消耗率校正系數(shù)與指示功率比和機(jī)械效率的關(guān)系同時(shí)進(jìn)行識(shí)別,采用雙輸入雙輸出的2-10-2結(jié)構(gòu)、2-15-2結(jié)構(gòu)、2-20-2結(jié)構(gòu)進(jìn)行訓(xùn)練,識(shí)別情況分別如表3-5所示。
轉(zhuǎn)貼于
從實(shí)際的應(yīng)用效果來看,2-15-2和2-20-2的逼近能力相似,2-15-2的速度快于2-20-2結(jié)構(gòu),而2-20-2結(jié)構(gòu)的識(shí)別能力要遠(yuǎn)低于前兩種結(jié)構(gòu),采用更少的隱層結(jié)點(diǎn)數(shù)就會(huì)使訓(xùn)練的時(shí)間過長,甚至使訓(xùn)練過程無法進(jìn)行.因此最后選擇2-15-2的BP網(wǎng)絡(luò)結(jié)構(gòu)作為最終的神經(jīng)網(wǎng)絡(luò)形式。如圖1所示為訓(xùn)練次數(shù)與誤差平方和之間的關(guān)系曲線,表4為部分網(wǎng)絡(luò)輸出與實(shí)際數(shù)值的比較.
通過以上計(jì)算分析可見,神經(jīng)網(wǎng)絡(luò)的映射輸出能力是相當(dāng)強(qiáng)的,通過合理的網(wǎng)絡(luò)結(jié)構(gòu)選擇和具體的參數(shù)應(yīng)用,完全可以滿足優(yōu)化設(shè)計(jì)的計(jì)算要求,大大縮短優(yōu)化當(dāng)中的計(jì)算迭代時(shí)間,提高計(jì)算效率。
3結(jié)論
(1)人工神經(jīng)網(wǎng)絡(luò)有很強(qiáng)的數(shù)據(jù)映射能力,能夠很好地識(shí)別所給數(shù)據(jù)之間的對(duì)應(yīng)關(guān)系,映射的精度可以滿足一般設(shè)計(jì)計(jì)算要求.
(2)對(duì)于包含無規(guī)律圖表數(shù)據(jù)的有關(guān)計(jì)算問題,應(yīng)用神經(jīng)網(wǎng)絡(luò)是一個(gè)很好的加快運(yùn)算速度的解決方法.
(3)在數(shù)據(jù)的映射識(shí)別當(dāng)中,網(wǎng)絡(luò)的結(jié)構(gòu)形式和參數(shù)選擇對(duì)于問題的求解精度和速度都是致關(guān)重要的’同時(shí)應(yīng)當(dāng)注意數(shù)據(jù)的過度訓(xùn)練問題.
(4)智能算法的應(yīng)用為具體的工程計(jì)算提供了更方便、有效的手段,尋找有效的計(jì)算方法,以及多種算法的混合應(yīng)用將是擺在設(shè)計(jì)人員的一個(gè)課題.
參考文獻(xiàn)
[1]焦李成.神經(jīng)網(wǎng)絡(luò)系統(tǒng)理論[M]西安:西安電子科技大學(xué)出版社,1990.
[2]焦李成.神經(jīng)網(wǎng)絡(luò)的應(yīng)用與實(shí)現(xiàn)[M].西安:西安電子科技大學(xué)出版社,1993.
[3]王文成.神經(jīng)網(wǎng)絡(luò)及其在汽車工程中的應(yīng)用[M].北京:北京理工大學(xué)出版社,1998.
[4]張成寶,丁玉蘭,雷雨成.人工神經(jīng)網(wǎng)絡(luò)在汽車變速器齒輪故障診斷中的應(yīng)用[J].汽車工程,1999,21(6) 374-378.
[5]Watanahle Y, Sharp H S. Neural network learning control of automotive aotic-e suspension systems.lnternational,lournal of Vehicle Design[J],1999,21(2/3):124一147.
1 引言
在現(xiàn)代機(jī)械制造領(lǐng)域中,隨著工廠機(jī)械制造機(jī)器人的普及,機(jī)械臂已經(jīng)變得越來越重要。與傳統(tǒng)的工業(yè)機(jī)械臂相比,未來的機(jī)械臂要能夠完成更加復(fù)雜的機(jī)械加工任務(wù)。在實(shí)際的機(jī)械制造機(jī)器人應(yīng)用中,衡量機(jī)械臂的工作性能主要是工作效率和工作可靠性指標(biāo)。
機(jī)械臂是一個(gè)開鏈?zhǔn)降亩噙B桿機(jī)構(gòu),用固定基座來進(jìn)行固定,機(jī)械臂可以根據(jù)需要在自由端安裝執(zhí)行器來實(shí)現(xiàn)工廠生產(chǎn)操作,關(guān)節(jié)之間的運(yùn)動(dòng)可以帶動(dòng)連桿運(yùn)動(dòng),使得機(jī)械臂運(yùn)動(dòng)來達(dá)到不同的姿態(tài)。本文主要針對(duì)這個(gè)問題展開研究,探討機(jī)械臂的路徑規(guī)劃問題。
2 徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)介紹
神經(jīng)網(wǎng)絡(luò)具有分布式存儲(chǔ)、并行協(xié)同處理和對(duì)信息具有自組織自學(xué)習(xí)等優(yōu)點(diǎn),所以廣泛應(yīng)用在人工智能方面。神經(jīng)網(wǎng)絡(luò)的大量神經(jīng)元之間的連接權(quán)值和分布分別代表著特定的信息,當(dāng)網(wǎng)絡(luò)受損時(shí)可以保證網(wǎng)絡(luò)的輸出正確,這種信息處理方式大大提高了網(wǎng)絡(luò)的容錯(cuò)性和魯棒性。
徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)是基于函數(shù)逼近理論的,是根據(jù)系統(tǒng)的海量樣本數(shù)據(jù)來選擇隱含層神經(jīng)元的徑向基激活函數(shù),可以用基函數(shù)來表示,能夠無限的逼近真實(shí)的算法表達(dá),它選擇合理的隱含層單元個(gè)數(shù)和作用函數(shù),能夠把原來的非線性不可分問題映射成線性可分問題,把不好處理的非線性問題方便的簡化為線性問題。徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)在訓(xùn)練時(shí),在給定訓(xùn)練樣本后學(xué)習(xí)算法要解決的核心問題是:設(shè)計(jì)神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)結(jié)構(gòu)和求解相關(guān)的參數(shù)。網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)主要包括網(wǎng)絡(luò)的輸入、網(wǎng)絡(luò)的輸出個(gè)數(shù),隱含層節(jié)點(diǎn)數(shù)目。相關(guān)的參數(shù)主要包括涉及的參數(shù)有徑向基函數(shù)的中心值、以及函數(shù)寬度和權(quán)值。
徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)屬于一種性能較優(yōu)的前饋型神經(jīng)網(wǎng)絡(luò),它具有多維度非線性的映射能力和并行信息處理的能力,以及強(qiáng)大的聚類分析能力。與BP神經(jīng)網(wǎng)絡(luò)相比,徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)采用的是徑向?qū)ΨQ的核函數(shù),這樣可以大幅提高神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)速度,同時(shí)能夠避免陷入局部極小,具有較好的全局尋優(yōu)能力,同時(shí)也具有較好的逼近任意非線性映射能力。
3 機(jī)械臂路徑規(guī)劃設(shè)計(jì)
機(jī)械臂軌跡規(guī)劃主要研究的是機(jī)械臂在多維空間中的運(yùn)動(dòng)路線,即給定一個(gè)初始狀態(tài)位姿,一個(gè)期望的末端執(zhí)行器的位姿,根據(jù)規(guī)定的要求來尋找連接初始狀態(tài)和期望狀態(tài)的最優(yōu)有效路徑,然后把最優(yōu)路徑轉(zhuǎn)變?yōu)闄C(jī)械臂各個(gè)關(guān)節(jié)的空間坐標(biāo),進(jìn)一步轉(zhuǎn)化為機(jī)械臂的各個(gè)關(guān)節(jié)的位移、速度和加速度,就形成了機(jī)械臂的路徑。
機(jī)械臂的動(dòng)力學(xué)狀態(tài)模型為:
其中:D(q)為對(duì)稱正定的慣量矩陣,為哥式力與離心力矩陣,G(q)為重力項(xiàng)矩陣,q為機(jī)械臂關(guān)節(jié)角位移矢量,為機(jī)械臂的角速度矢量,為機(jī)械臂的角加速度矢量,為機(jī)械臂各關(guān)節(jié)控制力矩輸入矢量。
機(jī)械臂的動(dòng)力學(xué)參考模型為:
其中,y為2n+1的參考模型狀態(tài)矢量,r為n×1的參考模型輸入矢量。
徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)包括一個(gè)輸入層、一個(gè)隱層和一個(gè)輸出層。隱層由一個(gè)徑向基函數(shù)組成,和每個(gè)隱層節(jié)點(diǎn)相關(guān)的參數(shù)為網(wǎng)絡(luò)中心向量和半徑。本文選擇高斯函數(shù)作為徑向基函數(shù)。本文選擇的神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法為:輸入層到隱層用無導(dǎo)師的聚類算法來訓(xùn)練,常用的是K-均值算法和模糊聚類算法,來確定神經(jīng)網(wǎng)絡(luò)的中心向量和半徑,隱層和輸出層的權(quán)值調(diào)整用有導(dǎo)師指導(dǎo)算法,來確定權(quán)重向量。
算法流程如下:首先對(duì)樣本數(shù)據(jù)進(jìn)行聚類,然后確定神經(jīng)網(wǎng)絡(luò)的隱層節(jié)點(diǎn)的中心的初始值,將這些樣本進(jìn)行分組,然后將訓(xùn)練樣本按照距離的遠(yuǎn)近向隱層節(jié)點(diǎn)的中心聚類,完成后計(jì)算樣本的均值,將樣本均值賦值給隱層中心作為下一次迭代的聚類中心,下一步要判斷聚類過程是否結(jié)束,聚類結(jié)束標(biāo)志是當(dāng)劃分的每個(gè)聚類的樣本中心不再變化。然后再計(jì)算下寬度半徑,寬度半徑等于每個(gè)聚類中心與該訓(xùn)練樣本之間的平均距離。
通過算法驗(yàn)證,對(duì)機(jī)械臂的路徑規(guī)劃驗(yàn)證了算法的合理性和可行性,規(guī)劃后支反力和扭矩等動(dòng)力性能較好,完全滿足工程需求。
關(guān)鍵詞:脫硫脫硝;BP神經(jīng)網(wǎng)絡(luò);反向傳播;預(yù)測(cè)
中圖分類號(hào):X73文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):16749944(2014)07021303
1技術(shù)背景
煤炭燃燒產(chǎn)生的煙氣中,含有大量的氮硫氧化物,這些氧化物直接排放到空氣中,會(huì)導(dǎo)致酸雨等自然災(zāi)害的發(fā)生。因此,各國都在積極研究煙氣脫硫脫硝技術(shù)。目前最新的技術(shù)是采用臭氧的強(qiáng)氧化性對(duì)煙氣中的NO進(jìn)行處理,使之溶解于水,降低煙氣中的氮硫氧化物。
現(xiàn)有的技術(shù)對(duì)于臭氧的添加采用的是PID控制,此控制技術(shù)經(jīng)過多年的發(fā)展,已經(jīng)相對(duì)成熟。其控制設(shè)備簡單,控制思路清晰,但在控制過程中也存在很多問題,比如對(duì)于大慣性環(huán)節(jié)控制滯后,震蕩過度等問題。在添加臭氧的過程中,通過檢測(cè)煙氣輸入端的氮硫氧化物的摩爾量,利用反應(yīng)方程式計(jì)算理想狀態(tài)下需要的臭氧摩爾量,然后再通過檢測(cè)通入堿性廢水中和前的NOx,SO2的濃度,完成PID調(diào)節(jié),改變臭氧的添加量。
在添加的過程中,因?yàn)橛绊懗粞跆砑恿康母鱾€(gè)因素之間是非線性的,所以無法進(jìn)行單一的線性補(bǔ)償,導(dǎo)致臭氧添加量過大或者過少。過大會(huì)造成添加臭氧的浪費(fèi),過小會(huì)使煙氣反應(yīng)不完全,導(dǎo)致煙氣排放不達(dá)標(biāo),所以本發(fā)明的目的就是根據(jù)歷史數(shù)據(jù)對(duì)臭氧的需求量建立預(yù)測(cè)模型,通過數(shù)據(jù)的分析,預(yù)測(cè)臭氧的消耗量,以達(dá)到減少浪費(fèi)或者減少煙氣不達(dá)標(biāo)的情況。
人工神經(jīng)網(wǎng)絡(luò)是利用計(jì)算機(jī)模擬人腦的結(jié)構(gòu)和功能的一門新學(xué)科[1],能夠利用自身的優(yōu)良處理性能,解決高度非線性和嚴(yán)重不確定性系統(tǒng)的復(fù)雜問題,在此適合進(jìn)行對(duì)臭氧需求量進(jìn)行預(yù)測(cè),所以提出建立一個(gè)三層BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型,使用改進(jìn)的算法進(jìn)行訓(xùn)練,并對(duì)煙氣脫硫脫硝中臭氧需求量的預(yù)測(cè)的方法[2]。
2BP網(wǎng)絡(luò)及動(dòng)量梯度下降算法
BP(Back Propagation)網(wǎng)絡(luò)是1986年由Rumelhart和McCelland為首的科學(xué)家小組提出的,一種按誤差逆?zhèn)鞑ニ惴ㄓ?xùn)練的多層前饋網(wǎng)絡(luò),是目前應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)模型之一。BP網(wǎng)絡(luò)能學(xué)習(xí)和存貯大量的輸入-輸出模式映射關(guān)系,并且無需事前揭示描述這種映射關(guān)系的數(shù)學(xué)方程。它的學(xué)習(xí)規(guī)則是使用最速下降法,通過反向傳播來不斷調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)的誤差平方和最小。BP神經(jīng)網(wǎng)絡(luò)模型拓?fù)浣Y(jié)構(gòu)包括輸入層(input layer)、隱含層(hide layer)和輸出層(output layer)。
網(wǎng)絡(luò)學(xué)習(xí)規(guī)則又稱為 學(xué)習(xí)規(guī)則,對(duì)于給定的一組訓(xùn)練模式,不斷用一個(gè)個(gè)訓(xùn)練模式重復(fù)前向傳播和誤差反向傳播過程,各個(gè)訓(xùn)練模式都滿足要求時(shí),則說明BP網(wǎng)絡(luò)已學(xué)習(xí)好了。從網(wǎng)絡(luò)學(xué)習(xí)的角度來看,網(wǎng)絡(luò)狀態(tài)前向更新及誤差信號(hào)傳播過程中,信息的傳播是雙向的,但是不意味著網(wǎng)絡(luò)層與層之間的結(jié)構(gòu)也是雙向的。
BP神經(jīng)網(wǎng)絡(luò)能夠以任意精度逼近任何非線性連續(xù)函,使得其特別適合于求解內(nèi)部機(jī)制復(fù)雜的問題,即BP神經(jīng)網(wǎng)絡(luò)具有較強(qiáng)的非線性映射能力;其次BP神經(jīng)網(wǎng)絡(luò)具有高度自學(xué)習(xí)和自適應(yīng)的能力。還有泛化能力,即BP神經(jīng)網(wǎng)絡(luò)具有將學(xué)習(xí)成果應(yīng)用于新知識(shí)的能力。容錯(cuò)能力:BP神經(jīng)網(wǎng)絡(luò)具有一定的容錯(cuò)能力,即使系統(tǒng)在受到局部損傷時(shí)還是可以正常工作(圖1)。
從(2)式可看出,如果比例系數(shù)μ=0,則為高斯-牛頓法;如果μ取值很大,則LM算法接近梯度下降法,每迭代成功一步,則μ減小一些,這樣在接近誤差目標(biāo)的時(shí)候,逐漸與高斯-牛頓法相似[4]。高斯-牛頓法在接近誤差的最小值的時(shí)候,計(jì)算速度更快,精度也更高。由于LM算法利用了近似的二階導(dǎo)數(shù)信息,它比梯度下降法快得多,實(shí)踐證明,采用LM算法可以較原來的梯度下降法提高速度幾十甚至上百倍。另外由于[JT(w)J(w)+μw]是正定的,所以(2)式的解總是存在的,從這個(gè)意義上說,LM算法也優(yōu)于高斯-牛頓法,因?yàn)閷?duì)于高斯-牛頓法來說,JTJ是否滿秩還是個(gè)潛在的問題。
在實(shí)際的操作中,μ是一個(gè)試探性的參數(shù),對(duì)于給定的μ,如果求得的 能使誤差指標(biāo)函數(shù) 降低,則E(w)降低;反之,則μ增加。用(2)式修改一次權(quán)值和閾值時(shí)需要求n階的代數(shù)方程(n為網(wǎng)絡(luò)中權(quán)值數(shù)目)。LM算法的計(jì)算復(fù)雜度為O(n3/6),若n很大,則計(jì)算量和存儲(chǔ)量都非常大。然而,每次迭代效率的顯著提高,可大大改善其整體性能,特別是在精度要求高的時(shí)候[5]。
3臭氧脫硫脫硝需求量的預(yù)測(cè)
以BP神經(jīng)網(wǎng)絡(luò)模型為原始模型,建立一個(gè)三層BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型,使用改進(jìn)的算法進(jìn)行訓(xùn)練,并對(duì)煙氣脫硫脫硝中臭氧需求量的預(yù)測(cè)[6],主要步驟分析為以下幾個(gè)方面。
(1)根據(jù)生產(chǎn)工藝流程,臭氧將難溶于水的NOx,SO2等氮硫氧化物氧化成易溶于水的高價(jià)氧化物,通過堿性廢水進(jìn)行中和,同時(shí)脫硫脫硝的目的。通過分析可知,影響臭氧需求量的主要因素是:煙氣的流速,反應(yīng)前煙氣中氧氣的濃度,反應(yīng)中管道內(nèi)的平均氧氣濃度,反應(yīng)管道中臭氧與SO2的摩爾比,臭氧與NOx的摩爾比,氣體在反應(yīng)管道中的停留時(shí)間,堿性廢水吸收液的溫度,堿性廢水吸收液中堿離子的濃度和煙氣的溫度等因素。在此,選取以上影響因素作為BP神經(jīng)網(wǎng)絡(luò)模型的輸入變量,通入的臭氧的流速作為輸出變量。
在建立BP神經(jīng)網(wǎng)絡(luò)模型過程中,隱含層節(jié)點(diǎn)數(shù)對(duì)BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)精度有較大的影響,節(jié)點(diǎn)數(shù)太少,網(wǎng)絡(luò)不能很好地學(xué)習(xí),需要增加訓(xùn)練次數(shù),訓(xùn)練的精度也受影響;節(jié)點(diǎn)數(shù)太多,訓(xùn)練時(shí)間增加,網(wǎng)絡(luò)容易過擬合[7,8]。最佳隱含層節(jié)點(diǎn)數(shù)的選擇可參考如下公式。
4結(jié)語
改進(jìn)的BP網(wǎng)絡(luò)預(yù)測(cè)模型,對(duì)同時(shí)脫硫脫硝臭氧需求量進(jìn)行預(yù)測(cè),訓(xùn)練算法采用動(dòng)態(tài)自適應(yīng)學(xué)習(xí)率的梯度下降算法,能夠更快的進(jìn)行訓(xùn)練,預(yù)測(cè)誤差也較小,預(yù)測(cè)值有很好的利用價(jià)值;通過對(duì)臭氧需求量的預(yù)測(cè),能夠?qū)崟r(shí)的根據(jù)工況自動(dòng)改變臭氧的添加量,既能滿足脫硫脫硝的技術(shù)要求,同時(shí)也可以降低臭氧的需求量,降低企業(yè)成本,提高公司效益。本文只是設(shè)計(jì)了方法,結(jié)果需要經(jīng)過試驗(yàn)進(jìn)行驗(yàn)證,并進(jìn)行改進(jìn)。
參考文獻(xiàn):
[1] 吳昌設(shè).基于人工神經(jīng)網(wǎng)絡(luò)的電網(wǎng)日負(fù)荷預(yù)測(cè)研究[D].杭州:浙江大學(xué),2011.
[2] 姜成科.基于遺傳算法的神經(jīng)網(wǎng)絡(luò)在大壩變形預(yù)報(bào)中的應(yīng)用 [D].大連:大連理工大學(xué),2008.
[3] 劉曉悅,姚樂樂,聚類分析在超短期電力負(fù)荷中的應(yīng)用[J].河北聯(lián)合大學(xué)學(xué)報(bào):自然科學(xué)版,2013,35(3):74~80.
[4] 沙瑞華.基于神經(jīng)網(wǎng)絡(luò)的水電機(jī)組動(dòng)載識(shí)別研究[D].大連:大連理工大學(xué),2005.
[5] 黃豪彩,楊冠魯.基于LM算法的神經(jīng)網(wǎng)絡(luò)系統(tǒng)辨識(shí)[J].組合機(jī)床與自動(dòng)化加工技術(shù),2003(2):6~8.
[6] 馮居易,郭曄.基于LM算法的石油期貨價(jià)格預(yù)測(cè)研究[J].技術(shù)經(jīng)濟(jì)與管理研究,2009(5):19~21.
[7] 項(xiàng)灝,張俊.一種改進(jìn)的量子遺傳模擬退火算法及其在神經(jīng)網(wǎng)絡(luò)智能故障診斷中的應(yīng)用[J].機(jī)床與液壓,2012.40(13):196~200.
關(guān)鍵詞性能對(duì)比感知器BP網(wǎng)絡(luò)霍普菲爾德網(wǎng)絡(luò)字符識(shí)別
1引言
人工神經(jīng)網(wǎng)絡(luò)是在人類對(duì)其大腦神經(jīng)網(wǎng)絡(luò)認(rèn)識(shí)理解的基礎(chǔ)上人工構(gòu)造的能夠?qū)崿F(xiàn)某種功能的神經(jīng)網(wǎng)絡(luò)。 它是理論化的人腦神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)模型,是基于模仿大腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能而建立的一種信息處理系統(tǒng)。因其自組織、自學(xué)習(xí)能力以及具有信息的分布式存儲(chǔ)和并行處理,信息存儲(chǔ)與處理的合一等特點(diǎn)得到了廣泛的關(guān)注,已經(jīng)發(fā)展了上百種人工神經(jīng)網(wǎng)絡(luò)。
一般來說,人工神經(jīng)網(wǎng)絡(luò)從結(jié)構(gòu)上可分為兩種:前向網(wǎng)絡(luò)和反饋網(wǎng)絡(luò)。典型的前向網(wǎng)絡(luò)有單層感知器、BP網(wǎng)絡(luò)等,反饋網(wǎng)絡(luò)有霍普菲爾德網(wǎng)絡(luò)等[1]。
人工神經(jīng)網(wǎng)絡(luò)已經(jīng)被廣泛應(yīng)用于模式識(shí)別、信號(hào)處理、專家系統(tǒng)、優(yōu)化組合、智能控制等各個(gè)方面,其中采用人工神經(jīng)網(wǎng)絡(luò)進(jìn)行模式識(shí)別具有一些傳統(tǒng)技術(shù)所沒有的優(yōu)點(diǎn):良好的容錯(cuò)能力[2j、分類能力、并行處理能力和自學(xué)習(xí)能力,并且其運(yùn)行速度快,自適應(yīng)性能好,具有較高的分辨率。單層感知器、BP網(wǎng)絡(luò)和霍普菲爾德網(wǎng)絡(luò)均可以用于字符識(shí)別。
本文通過具體采用感知器網(wǎng)絡(luò)、BP網(wǎng)絡(luò)和霍普菲爾德反饋網(wǎng)絡(luò)對(duì)26個(gè)英文字母進(jìn)行識(shí)別的應(yīng)用,通過實(shí)驗(yàn)給出各自的識(shí)別出錯(cuò)率,通過比較,可以看出這3種神經(jīng)網(wǎng)絡(luò)的識(shí)別能力以及各自的優(yōu)缺點(diǎn)。
2 字符識(shí)別問題描述與網(wǎng)絡(luò)識(shí)別前的預(yù)處理
字符識(shí)別在現(xiàn)代日常生活的應(yīng)用越來越廣泛,比如車輛牌照自動(dòng)識(shí)別系統(tǒng)[3,4],手寫識(shí)別系統(tǒng)[5],辦公自動(dòng)化等等[6]。畢業(yè)論文 本文采用單層感知器、BP網(wǎng)絡(luò)和霍普菲爾德網(wǎng)絡(luò)對(duì)26個(gè)英文字母進(jìn)行識(shí)別。首先將待識(shí)別的26個(gè)字母中的每一個(gè)字母都通過長和寬分別為7×5的方格進(jìn)行數(shù)字化處理,并用一個(gè)向量表示。其相應(yīng)有數(shù)據(jù)的位置置為1,其他位置置為O。圖1給出了字母A、B和C的數(shù)字化過程,其中最左邊的為字母A的數(shù)字化處理結(jié)果所得對(duì)應(yīng)的向量為:IetterA~「00100010100101010001111111000110001〕’,由此可得每個(gè)字母由35個(gè)元素組成一個(gè)向量。由26個(gè)標(biāo)準(zhǔn)字母組成的輸人向量被定義為一個(gè)輸人向量矩陣alphabet,即神經(jīng)網(wǎng)絡(luò)的樣本輸人為一個(gè)35×26的矩陣。其中alphabet=[letterA,letterB,lettere,……letterZj。網(wǎng)絡(luò)樣本輸出需要一個(gè)對(duì)26個(gè)輸人字母進(jìn)行區(qū)分輸出向量,對(duì)于任意一個(gè)輸人字母,網(wǎng)絡(luò)輸出在字母對(duì)應(yīng)的順序位置上的值為1,其余為O,即網(wǎng)絡(luò)輸出矩陣為對(duì)角線上為1的26×26的單位陣,定義target=eye(26)。
本文共有兩類這樣的數(shù)據(jù)作為輸人:一類是理想的標(biāo)準(zhǔn)輸人信號(hào);另一類是在標(biāo)準(zhǔn)輸人信號(hào)中加上用MATLAB工具箱里的噪聲信號(hào),即randn函數(shù)。
3 識(shí)別字符的網(wǎng)絡(luò)設(shè)計(jì)及其實(shí)驗(yàn)分析
3.1單層感知器的設(shè)計(jì)及其識(shí)別效果
選取網(wǎng)絡(luò)35個(gè)輸人節(jié)點(diǎn)和26個(gè)輸出節(jié)點(diǎn),設(shè)置目標(biāo)誤差為0.0001,最大訓(xùn)練次數(shù)為40。設(shè)計(jì)出的網(wǎng)絡(luò)使輸出矢量在正確的位置上輸出為1,在其他位置上輸出為O。醫(yī)學(xué)論文 首先用理想輸人信號(hào)訓(xùn)練網(wǎng)絡(luò),得到無噪聲訓(xùn)練結(jié)果,然后用兩組標(biāo)準(zhǔn)輸入矢量加上兩組帶有隨機(jī)噪聲的輸人矢量訓(xùn)練網(wǎng)絡(luò),這樣可以保證網(wǎng)絡(luò)同時(shí)具有對(duì)理想輸人和噪聲輸人分類的能力。網(wǎng)絡(luò)訓(xùn)練完后,為保證網(wǎng)絡(luò)能準(zhǔn)確無誤地識(shí)別出理想的字符,再用無噪聲的標(biāo)準(zhǔn)輸入訓(xùn)練網(wǎng)絡(luò),最終得到有能力識(shí)別帶有噪聲輸人的網(wǎng)絡(luò)。下一步是對(duì)所設(shè)計(jì)的網(wǎng)絡(luò)進(jìn)行性能測(cè)試:給網(wǎng)絡(luò)輸人任意字母,并在其上加人具有平均值從。~0.2的噪聲,隨機(jī)產(chǎn)生100個(gè)輸人矢量,分別對(duì)上述兩種網(wǎng)絡(luò)的字母識(shí)別出錯(cuò)率進(jìn)行實(shí)驗(yàn),結(jié)果如圖2所示。其中縱坐標(biāo)所表示的識(shí)別出錯(cuò)率是將實(shí)際輸出減去期望輸出所得的輸出矩陣中所有元素的絕對(duì)值和的一半再除以26得到的;虛線代表用無噪聲的標(biāo)準(zhǔn)輸人信號(hào)訓(xùn)練出網(wǎng)絡(luò)的出錯(cuò)率,實(shí)線代表用有噪聲訓(xùn)練出網(wǎng)絡(luò)的出錯(cuò)率。從圖中可以看出,無噪聲訓(xùn)練網(wǎng)絡(luò)對(duì)字符進(jìn)行識(shí)別時(shí),當(dāng)字符一出現(xiàn)噪聲時(shí),該網(wǎng)絡(luò)識(shí)別立刻出現(xiàn)錯(cuò)誤;當(dāng)噪聲均值超過0.02時(shí),識(shí)別出錯(cuò)率急劇上升,其最大出錯(cuò)率達(dá)到21.5%。由此可見,無噪聲訓(xùn)練網(wǎng)絡(luò)識(shí)別幾乎沒有抗干擾能力。而有噪聲訓(xùn)練出的網(wǎng)絡(luò)具有一定的抗干擾能力,它在均值為。~0.06之間的噪聲環(huán)境下,能夠準(zhǔn)確無誤地識(shí)別;其最大識(shí)別出錯(cuò)率約為6.6%,遠(yuǎn)遠(yuǎn)小于無噪聲訓(xùn)練出的網(wǎng)絡(luò)。
3.2BP網(wǎng)絡(luò)的設(shè)計(jì)及其識(shí)別效果
該網(wǎng)絡(luò)設(shè)計(jì)方法在文獻(xiàn)[lj中有詳細(xì)介紹。網(wǎng)絡(luò)具有35個(gè)輸人節(jié)點(diǎn)和26個(gè)輸出節(jié)點(diǎn)。目標(biāo)誤差為0.0001,采用輸人在(0,l)范圍內(nèi)對(duì)數(shù)S型激活函數(shù)兩層109519/109519網(wǎng)絡(luò),隱含層根據(jù)經(jīng)驗(yàn)選取10個(gè)神經(jīng)元。和單層感知器一樣,分別用理想輸人信號(hào)和帶有隨機(jī)噪聲的輸人訓(xùn)練網(wǎng)絡(luò),得到有噪聲訓(xùn)練網(wǎng)絡(luò)和無噪聲訓(xùn)練網(wǎng)絡(luò)。由于噪聲輸人矢量可能會(huì)導(dǎo)致網(wǎng)絡(luò)的1或o輸出不正確,或出現(xiàn)其他值,所以為了使網(wǎng)絡(luò)具有抗干擾能力,在網(wǎng)絡(luò)訓(xùn)練后,再將其輸出經(jīng)過一層競爭網(wǎng)絡(luò)的處理,使網(wǎng)絡(luò)的輸出只在本列中的最大值的位t為1,保證在其他位置輸出為O,其中網(wǎng)絡(luò)的訓(xùn)練采用自適應(yīng)學(xué)習(xí)速率加附加動(dòng)量法,在MATLAB工具箱中直接調(diào)用traingdx。在與單層感知器相同的測(cè)試條件下對(duì)網(wǎng)絡(luò)進(jìn)行性能測(cè)試,結(jié)果如圖3所示。其中虛線代表用無噪聲訓(xùn)練網(wǎng)絡(luò)的出錯(cuò)率,實(shí)線代表用有噪聲訓(xùn)練網(wǎng)絡(luò)的出錯(cuò)率。從圖中可以看出,在均值為o一0.12之間的噪聲環(huán)境下,兩個(gè)網(wǎng)絡(luò)都能夠準(zhǔn)確地進(jìn)行識(shí)別。在0.12~0.15之間的噪聲環(huán)境下,由于噪聲幅度相對(duì)較小,待識(shí)別字符接近于理想字符,故無噪聲訓(xùn)練網(wǎng)絡(luò)的出錯(cuò)率較有噪聲訓(xùn)練網(wǎng)絡(luò)略低。當(dāng)所加的噪聲均值超過。.15時(shí),待識(shí)別字符在噪聲作用下不再接近于理想字符,無噪聲訓(xùn)練網(wǎng)絡(luò)的出錯(cuò)率急劇上升,此時(shí)有噪聲訓(xùn)練網(wǎng)絡(luò)的性能較優(yōu).
轉(zhuǎn)貼于 3.3離散型,霍普菲爾德網(wǎng)絡(luò)的設(shè)計(jì)及其識(shí)別效果
此時(shí)網(wǎng)絡(luò)輸人節(jié)點(diǎn)數(shù)目與輸出神經(jīng)元的數(shù)目是相等的,有r=s=35,采用正交化的權(quán)值設(shè)計(jì)方法。在MATLAB工具箱中可直接調(diào)用函數(shù)newh叩.m。要注意的是,由于調(diào)用函數(shù)newhoP.m,需要將輸人信號(hào)中所有的。英語論文 變換為一1。如letterA~[一1一11~1-1一11一11一l一11一11一11一1一1一11111111一l一l一111一1一1一11〕’。設(shè)計(jì)離散型霍普菲爾德網(wǎng)絡(luò)進(jìn)行字符識(shí)別,只需要讓網(wǎng)絡(luò)記憶所要求的穩(wěn)定平衡點(diǎn),即待識(shí)別的26個(gè)英文字母。故只需要用理想輸人信號(hào)來訓(xùn)練網(wǎng)絡(luò)。對(duì)于訓(xùn)練后的網(wǎng)絡(luò),我們進(jìn)行性能測(cè)試。給網(wǎng)絡(luò)輸入任意字母,并在其上加人具有平均值從。~0.5的噪聲,隨機(jī)產(chǎn)生100個(gè)輸人矢量,觀察字母識(shí)別出錯(cuò)率,結(jié)果如圖4所示。從圖中可以看出,在均值為0~0.33之間的噪聲環(huán)境下,網(wǎng)絡(luò)能夠準(zhǔn)確地進(jìn)行識(shí)別。在0.33~0.4之間的噪聲環(huán)境下,識(shí)別出錯(cuò)率不到1%,在0.4以上的噪聲環(huán)境下,網(wǎng)絡(luò)識(shí)別出錯(cuò)率急劇上升,最高達(dá)到大約10%??梢钥闯?,該網(wǎng)絡(luò)穩(wěn)定點(diǎn)的吸引域大約在0.3~。.4之間。當(dāng)噪聲均值在吸引域內(nèi)時(shí),網(wǎng)絡(luò)進(jìn)行字符識(shí)別時(shí)幾乎不出錯(cuò),而當(dāng)噪聲均值超過吸引域時(shí),網(wǎng)絡(luò)出錯(cuò)率急劇上升。
4結(jié)論
本文設(shè)計(jì)了3種人工神經(jīng)網(wǎng)絡(luò)對(duì)26個(gè)英文字母進(jìn)行了識(shí)別??梢钥闯?,這3種人工神經(jīng)網(wǎng)絡(luò)均能有效地進(jìn)行字符識(shí)別,并且識(shí)別速度快,自適應(yīng)性能好,分辨率較高。由圖2和圖3可以看出,單層感知器的有噪聲訓(xùn)練網(wǎng)絡(luò)在均值為O~0.06之間的噪聲環(huán)境下可以準(zhǔn)確無誤的識(shí)別,而有噪聲訓(xùn)練的BP網(wǎng)絡(luò)可以在o~0.12之間的噪聲環(huán)境下準(zhǔn)確無誤的識(shí)別,故BP絡(luò)網(wǎng)絡(luò)容錯(cuò)性比單層感知器的容錯(cuò)性好;此外,噪聲達(dá)到0.2時(shí),單層感知器的有噪聲訓(xùn)練網(wǎng)絡(luò)的識(shí)別出錯(cuò)率為6.6%,而有噪聲訓(xùn)練的BP網(wǎng)絡(luò)的識(shí)別出錯(cuò)率為2.1%,故BP網(wǎng)絡(luò)比單層感知器識(shí)別能力強(qiáng)。另外,由圖2、圖3和圖4可以看出,這3種網(wǎng)絡(luò)中霍普菲爾德網(wǎng)絡(luò)識(shí)別率最高,它在噪聲為0.33以前幾乎不會(huì)出錯(cuò),BP網(wǎng)絡(luò)次之,感知器最差。
通過設(shè)計(jì)、應(yīng)用與性能對(duì)比,我們可得單層感知器網(wǎng)絡(luò)結(jié)構(gòu)和算法都很簡單,訓(xùn)練時(shí)間短,但識(shí)別出錯(cuò)率較高,容錯(cuò)性也較差。BP網(wǎng)絡(luò)結(jié)構(gòu)和算法比單層感知器結(jié)構(gòu)稍復(fù)雜,但其識(shí)別率和容錯(cuò)性都較好?;羝辗茽柕戮W(wǎng)絡(luò)具有設(shè)計(jì)簡單且容錯(cuò)性最好的雙重優(yōu)點(diǎn)。因此,我們應(yīng)根據(jù)網(wǎng)絡(luò)的特點(diǎn)以及實(shí)際要求來選擇人工神經(jīng)網(wǎng)絡(luò)對(duì)字符進(jìn)行識(shí)別。 參考文獻(xiàn)
[1]叢爽.面向MATLAB工具箱的神經(jīng)網(wǎng)絡(luò)理論與應(yīng)用「M.合肥:中國科學(xué)技術(shù)大學(xué)出版社,2003.
[2]武強(qiáng),童學(xué)鋒,季雋.基于人工神經(jīng)網(wǎng)絡(luò)的數(shù)字字符識(shí)別[J].計(jì)算機(jī)工程,2003,29(14):112一113.
[3]廖翔云,許錦標(biāo),龔仕偉.車牌識(shí)別技術(shù)研究[J].徽機(jī)發(fā)展,2003,13:30一35.
[4]李中凱,王效岳,魏修亭.BP網(wǎng)絡(luò)在汽車牌照字符識(shí)別中的應(yīng)用[J].東理工大學(xué)學(xué)報(bào),2004,18(4):69一72.
關(guān)鍵詞:人工神經(jīng)網(wǎng)絡(luò);概算;BP
中圖分類號(hào):TP183文獻(xiàn)標(biāo)識(shí)碼: A
一、人工神經(jīng)網(wǎng)絡(luò)應(yīng)用于建設(shè)項(xiàng)目概算的重要意義
(一)人工神經(jīng)網(wǎng)絡(luò)
人工神經(jīng)網(wǎng)絡(luò)就是由許多神經(jīng)元互連在一起所組成的神經(jīng)結(jié)構(gòu),把神經(jīng)元之間相互作用的關(guān)系進(jìn)行數(shù)學(xué)模型化就可以得到神經(jīng)網(wǎng)絡(luò)模型。人工神經(jīng)網(wǎng)絡(luò)是一種非常復(fù)雜的非線性的動(dòng)態(tài)分析系統(tǒng)。它模擬人腦的神經(jīng)功能分層由單個(gè)神經(jīng)元非線性地、復(fù)雜地組合成一個(gè)網(wǎng)絡(luò)系統(tǒng)。當(dāng)某一問題的求解過程可描述為若干個(gè)有一定內(nèi)在聯(lián)系,又無法用解析法表達(dá)其內(nèi)在關(guān)系的各個(gè)輸入因子與輸出因子的關(guān)系時(shí),將輸入、輸出因子作為樣本進(jìn)入神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu),網(wǎng)絡(luò)系統(tǒng)會(huì)對(duì)各個(gè)輸入、輸出因子的因果關(guān)系作一番認(rèn)識(shí)和學(xué)習(xí),建立起各神經(jīng)元之間的連接強(qiáng)度(即權(quán)值)閥值。這樣學(xué)習(xí)后生成的人工神經(jīng)元網(wǎng)絡(luò)系統(tǒng),仿佛具有了人腦解決這一問題的技能。當(dāng)輸入一組新的參數(shù)它可以給出這個(gè)領(lǐng)域?qū)<艺J(rèn)為應(yīng)該輸出的數(shù)值。
(二)建設(shè)項(xiàng)目概算應(yīng)用神經(jīng)網(wǎng)絡(luò)的必要性
電網(wǎng)建設(shè)工程造價(jià)是組成電網(wǎng)的各分項(xiàng)工程的價(jià)格總和,而各分項(xiàng)工程的價(jià)格則取決于其工程量的大小和單價(jià)的高低。以往工程造價(jià)的計(jì)算是由造價(jià)編制人員算出各分項(xiàng)工程量,分別乘以其單價(jià)。由于組成電網(wǎng)的分項(xiàng)工程數(shù)量多,工程量的計(jì)算非常繁瑣,計(jì)算時(shí)間占造價(jià)計(jì)算總時(shí)間的90%以上,所以計(jì)算結(jié)果容易出現(xiàn)誤差。這表明造價(jià)計(jì)算的重點(diǎn)和難點(diǎn)在于工程量的計(jì)算。
一個(gè)有豐富經(jīng)驗(yàn)的造價(jià)師,根據(jù)工程類型、特征及其相關(guān)情況,參照以往經(jīng)驗(yàn)和工程數(shù)據(jù)資料,就能大致概算出造價(jià),而無需進(jìn)行大量繁雜計(jì)算,而且經(jīng)驗(yàn)越豐富,資料積累越多,格算的造價(jià)就越準(zhǔn)確,模仿這種大腦思維模式,正是人工神經(jīng)網(wǎng)絡(luò)所擅長的。神經(jīng)網(wǎng)絡(luò)模型通用性、適應(yīng)性強(qiáng),它不但不排斥新樣本,相反它會(huì)隨著樣本數(shù)的不斷增加而提高自身的概括能力和預(yù)測(cè)能力,這正好滿足了建立造價(jià)信息系統(tǒng)的要求--動(dòng)態(tài)地、自適應(yīng)地從眾多已完工程中提取有用信息,進(jìn)行預(yù)測(cè)并輔助決策,由于電網(wǎng)工程的單件性,一般不存在兩個(gè)完全一樣的工程,但許多工程之間存在著某種程度的相似性,造價(jià)估計(jì)分析的基本原理就是建立在電網(wǎng)工程的相似性基礎(chǔ)上,對(duì)于某個(gè)欲估工程,首先從分析電網(wǎng)類型和工程特征入手,再從數(shù)目眾多的同類已竣工的工程中找出與預(yù)估項(xiàng)目最相似的若干個(gè)工程,然后利用這些相似電網(wǎng)項(xiàng)目的造價(jià)資料作為原始數(shù)據(jù)進(jìn)行推理,最后得到擬建電網(wǎng)的造價(jià)及其他有關(guān)數(shù)據(jù)。
二、BP網(wǎng)絡(luò)
(一)BP網(wǎng)絡(luò)算法
神經(jīng)網(wǎng)絡(luò)在目前已有幾十種不同的模型,在人們提出的幾十種神經(jīng)網(wǎng)絡(luò)模型中,人們較多用的是Hopfield網(wǎng)絡(luò)、BP網(wǎng)絡(luò)、Kohonen網(wǎng)絡(luò)和ART(白適應(yīng)共振理論)網(wǎng)絡(luò)。其中BP網(wǎng)絡(luò)是反向傳播(BackPropagation)網(wǎng)絡(luò),它是一種多層前向網(wǎng)絡(luò),采用最小均方差學(xué)習(xí)方式,這是一種最廣泛應(yīng)用的網(wǎng)絡(luò)。
BP算法的學(xué)習(xí)過程是由正向傳播和反向傳播兩個(gè)過程組成。在正傳播過程中,輸入信息從輸入層經(jīng)隱含層逐層傳遞、處理,每一層神經(jīng)元的狀態(tài)只影響下一層神經(jīng)元的狀態(tài)。如果在輸出層不能得到期望輸出,則轉(zhuǎn)入反向傳播過程,將誤差信號(hào)沿原來的連接通路返回,通過修改各層間連結(jié)權(quán)的值,逐次地向輸入層傳播,再經(jīng)過正向傳播過程,兩個(gè)過程的反復(fù)運(yùn)用使得誤差不斷減小至滿足要求。其模型可以表示為:
單隱層BP網(wǎng)絡(luò)有三部分組成:輸入層,輸入向量:
X=(x1x2,...,x1,...,xn)T
隱含層:
輸出層:
期望輸出向量為:
d=(d1,d2,...,dk...,dl)T
輸入層到隱含層之間的權(quán)值矩陣用V表示:V=(v1,v2,...,vj,vm)T
隱含層到輸出層之間的權(quán)值矩陣用W表示:W=(w1,w2,...,wk,...,wl)T
轉(zhuǎn)移函數(shù)采用tansig函數(shù):
F(n)=2/(1+exp(-2*))-1
準(zhǔn)則函數(shù)(誤差):
權(quán)值的調(diào)整量:�
;
反向傳播計(jì)算公式,可得如下權(quán)系數(shù)學(xué)習(xí)規(guī)律:
(二)BP神經(jīng)網(wǎng)絡(luò)的利弊分析及相關(guān)建議
BP算法樣本訓(xùn)練失敗的可能性較大,原因有以下幾點(diǎn):
(1)從數(shù)學(xué)角度看,BP算法為一種局部搜索的優(yōu)化方法,但它要解決的問題是求解復(fù)雜非線性函數(shù)的全局極值,因此,算法很有可能陷入局部極值,使訓(xùn)練失敗;
(2)網(wǎng)絡(luò)的逼近、推廣能力完全取決于學(xué)習(xí)樣本的典型性。而對(duì)學(xué)習(xí)樣本的選取并組成訓(xùn)練集則是相當(dāng)困難的問題。
(3)難以解決應(yīng)用問題的實(shí)例規(guī)模和網(wǎng)絡(luò)規(guī)模間的矛盾。實(shí)例規(guī)模與網(wǎng)絡(luò)規(guī)模總是存在著很大差異,網(wǎng)絡(luò)容量也是有著自己的局限性,當(dāng)實(shí)例規(guī)模超出網(wǎng)絡(luò)容量時(shí),BP算法會(huì)失敗。
基于前文所給出的BP網(wǎng)絡(luò)技術(shù)存在的利弊現(xiàn)象,結(jié)合工程造價(jià)實(shí)際情況,個(gè)人認(rèn)為,其弊端的解決方法可以概括為以下幾點(diǎn):
(1)由于BP網(wǎng)絡(luò)技術(shù)在執(zhí)行較為復(fù)雜的目標(biāo)函數(shù)時(shí)會(huì)出現(xiàn)“崩潰”現(xiàn)象,即算法低效,函數(shù)圖象錯(cuò)亂、超過網(wǎng)絡(luò)容量等等。所以造價(jià)人員在選擇需要用BP算法概算的工程時(shí)應(yīng)該注意工程的復(fù)雜性,對(duì)于那些過于龐大、復(fù)雜的工程不宜采用BP算法,以免出現(xiàn)系統(tǒng)錯(cuò)亂。對(duì)于較為簡單、較為精簡的工程則可用BP算法進(jìn)行工程造價(jià)的概算。同時(shí),也應(yīng)注意實(shí)例造價(jià)概算工程的規(guī)模與網(wǎng)絡(luò)實(shí)際承載規(guī)模的大小,對(duì)于網(wǎng)絡(luò)承載范圍之內(nèi)的,才宜采用BP算法。
(2)樣本數(shù)據(jù)的采集非常重要。BP算法的網(wǎng)絡(luò)預(yù)測(cè)能力是與訓(xùn)練能力呈正比的。因此,首先需要確定分解項(xiàng)目,分解項(xiàng)目應(yīng)選擇那些最能體現(xiàn)一個(gè)工程特征并且最能決定這個(gè)工程造價(jià)的關(guān)鍵因素,這樣才能正確定位這個(gè)工程的造價(jià)。其次,選擇的已建工程一定是要與待估工程有著較高的相似度。此處,可以進(jìn)行相似度估測(cè),查看已建工程每個(gè)分項(xiàng)的隸屬度與待估工程隸屬度的差異,差異過大的樣本應(yīng)予以舍去。
(3)針對(duì)BP算法的“過擬合”現(xiàn)象,造價(jià)中需要注意的是選擇的樣本數(shù)量不宜過大。以防BP算法網(wǎng)絡(luò)學(xué)習(xí)了細(xì)節(jié)卻丟失了最重要的骨架――樣本內(nèi)部的規(guī)律,從而不能得出滿意的結(jié)果。
三、基于人工神經(jīng)網(wǎng)絡(luò)的送電線路工程造價(jià)概算
(一)送電線路工程造價(jià)估算模型建立
送電線路工程的造價(jià)受多個(gè)因素的相互影響,考慮下列因素作為影響著工程價(jià)格的主要因素,把它們列為神經(jīng)網(wǎng)絡(luò)的輸入單元,如圖l所示。設(shè)在某一電壓等級(jí)下的送電線路,考慮某種地形、氣象條件、架線回路、桿塔類型等基本因素的影響,把實(shí)際工程項(xiàng)目投資劃分為工地運(yùn)輸、土石方工程、基礎(chǔ)工程、桿塔工程、架線工程、附件工程等6個(gè)部分。根據(jù)測(cè)算出的每公里建筑安裝費(fèi)用,再加上其它費(fèi)用與資金成本,得出每公里的單位靜態(tài)投資造價(jià),將這些指標(biāo)作為神經(jīng)網(wǎng)絡(luò)的輸出單元。
圖1 圖2
(二)工神經(jīng)網(wǎng)絡(luò)模型的建立和設(shè)計(jì)
BP網(wǎng)絡(luò)模型結(jié)構(gòu)的選擇主要涉及到輸入層、輸出層、隱含層神經(jīng)元數(shù)目的確定、學(xué)習(xí)算法的確定等。
1、神經(jīng)元數(shù)目的確立
輸人層:由上面送電線路工程概算體系結(jié)構(gòu)的分析,按影響因素層次,可得到13項(xiàng)主要指標(biāo),也即是下面的輸入神經(jīng)元。
輸出層:輸出節(jié)點(diǎn)對(duì)應(yīng)于評(píng)價(jià)結(jié)果,在筆者建立的模型中,產(chǎn)生了7個(gè)相關(guān)指標(biāo),分別代表著本體工程的6項(xiàng)投資金額和單位投資金額,因此選擇7個(gè)輸出神經(jīng)元節(jié)點(diǎn)。
隱含層:隱含層神經(jīng)元單元數(shù)的選擇與輸入輸出單元的多少都有直接關(guān)系。
在實(shí)際操作中,可參考下面經(jīng)驗(yàn)公式(1)確定。
n1=(1)
其中,m為輸出神經(jīng)元數(shù);拓為輸入神經(jīng)元數(shù);a為1~10間的常數(shù),形成的人工神經(jīng)網(wǎng)絡(luò)示意圖見圖2。
2、輸入輸出向量
(1)輸入向量
1)地形因秦
送電線路地形可能由5種地形組合而成,所討論的某地區(qū)基本是丘陵和山地組成,因此選擇它們作為2個(gè)輸入神經(jīng)元,以所占線路的百分比表示。
2)線型因素
主要包括導(dǎo)線和地線型號(hào)的選擇,參考限額設(shè)計(jì)指標(biāo)與實(shí)際采用的導(dǎo)線型號(hào),對(duì)于110 kV線路,有LGJ―150/20、LGJ―185/25、LGJ一240/35、LGJ一300/35四種類型,依次選擇上述導(dǎo)線類型,將對(duì)應(yīng)量化值為1、2、3和4。在地線型號(hào)選擇中,選取GJ一35、GJ一50,對(duì)于量化值為1和2,導(dǎo)線和地線型號(hào)量化值作為2個(gè)輸入神經(jīng)元。
3)平均檔距
反映相鄰桿塔問的距離作為1個(gè)輸入神經(jīng)元。
4)桿塔數(shù)目
鐵塔數(shù)目和水泥桿數(shù)目對(duì)于造價(jià)影響重大,選擇鐵塔數(shù)和水泥桿數(shù)為2個(gè)輸入神經(jīng)元。
5)運(yùn)距
它包括人力運(yùn)距和汽車運(yùn)距兩部分,作為2個(gè)輸入神經(jīng)元。
6)土石方量
1個(gè)輸入神經(jīng)元。
7)金具
它包括掛線金具和拉線金具兩部分,作為2個(gè)輸入神經(jīng)元。
8)絕緣子
1個(gè)輸入神經(jīng)元。
(2)輸出向量
工地運(yùn)輸、土石方工程、基礎(chǔ)工程、桿塔工程、架線工程、附件工程、單位靜態(tài)投資。
參考文獻(xiàn)
關(guān)鍵詞:建筑電氣設(shè)備故障;模糊理論與神經(jīng)網(wǎng)絡(luò);設(shè)備故障診斷專家系統(tǒng)
中圖分類號(hào):TP207 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.11974/nyyjs.20160132074
隨著當(dāng)今社會(huì)經(jīng)濟(jì)的不斷發(fā)展,人們對(duì)生活品質(zhì)的追求越來越高,電氣設(shè)備變得多樣化和先進(jìn)化,不同區(qū)域間聯(lián)系更加緊密,而在給人們的生活帶來便利的同時(shí),簡單的人工故障診斷方法已經(jīng)無法滿足結(jié)構(gòu)日益復(fù)雜、功能日益完善的電氣系統(tǒng),建立電氣設(shè)備控制系統(tǒng)智能故障診斷專家系統(tǒng)已經(jīng)成為目前能滿足社會(huì)需求的選擇。近年來,模糊理論被廣泛的應(yīng)用于建立故障診斷神經(jīng)網(wǎng)絡(luò),將模糊系統(tǒng)與神經(jīng)網(wǎng)絡(luò)技術(shù)結(jié)合而形成的故障診斷技術(shù)也正在發(fā)展和應(yīng)用。
1 建筑電氣設(shè)備常見故障類型及危害
1.1 電氣設(shè)備常見故障類型
1.1.1 電源故障
1.1.2 線路故障
1.1.3 元器件故障
1.1.4 防雷接地處理故障
1.2 電氣設(shè)備故障危害
電氣設(shè)備的運(yùn)行需要很多電器元件的相互配合,產(chǎn)生故障通常是因?yàn)殡娔芑蚩刂菩畔⒃趥鬟f、分配、轉(zhuǎn)換過程中失去控制。斷路、短路、異常接地、漏電、電氣設(shè)備或電器元件損壞、電子設(shè)備受電磁干擾而發(fā)生錯(cuò)誤動(dòng)作、控制系統(tǒng)元件的偶然失效都屬于電氣設(shè)備故障[1],而這些故障也很有可能造成大范圍的人員傷亡以及造成嚴(yán)重的財(cái)產(chǎn)損失,一旦發(fā)生,也會(huì)造成其他相關(guān)領(lǐng)域不同程度的癱瘓。由此可見,電氣設(shè)備出現(xiàn)故障的概率較高,危害范圍也比較大。
2 神經(jīng)網(wǎng)絡(luò)與模糊理論
神經(jīng)網(wǎng)絡(luò)是一種模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)行為的特征,進(jìn)行分布式并行信息處理的算法數(shù)學(xué)模型[2]。這個(gè)模型可以根據(jù)不同系統(tǒng)自己的特征來選擇處理不同信息的方式,在很多不同領(lǐng)域都有比較廣泛的應(yīng)用,當(dāng)然,它本身也有一些缺陷,比如它不能求解不確定性問題、不能處理符號(hào)性信息等,因此,它需要結(jié)合其它相關(guān)理論和方法來彌補(bǔ)自身的不足,以便更好地解決特定領(lǐng)域中的問題。
模糊理論是指用到了模糊集合的基本概念或連續(xù)隸屬度函數(shù)的理論[3]。模糊控制是一種基于規(guī)則的控制,它可以直接采用語言型控制規(guī)則,在設(shè)計(jì)過程中不需要建立被控對(duì)象的精確數(shù)學(xué)模型,控制原理和策略通俗易懂,便于人們接受與理解,控制效果好,具有一定的智能水平,應(yīng)用起來很方便,適用于對(duì)那些數(shù)學(xué)模型難以獲取、動(dòng)態(tài)特性不易掌握或變化非常顯著的對(duì)象。模糊控制器是一種比較容易控制、掌握起來比較理想的非線性控制器,具有一定的適應(yīng)能力和強(qiáng)健性。
將模糊系統(tǒng)與神經(jīng)網(wǎng)絡(luò)技術(shù)相結(jié)合而形成的模糊神經(jīng)網(wǎng)絡(luò)可以作為對(duì)電氣設(shè)備進(jìn)行故障診斷的模型,這一技術(shù)的提出為電氣設(shè)備故障的診斷帶來發(fā)展和進(jìn)步,模糊理論被廣泛的應(yīng)用于建立故障診斷神經(jīng)網(wǎng)絡(luò),這2種理論的結(jié)合將會(huì)給故障診斷研究提供解決思路,值得推廣應(yīng)用[4]。
3 建立電氣設(shè)備故障診斷系統(tǒng)
由于電氣設(shè)備故障機(jī)理的復(fù)雜性,系統(tǒng)在實(shí)際運(yùn)用過程中,可能會(huì)發(fā)生隨機(jī)故障模式,故障征兆信息的正確與否直接關(guān)系到故障診斷的正確性,因此利用現(xiàn)有的電氣設(shè)備系統(tǒng)控制平臺(tái),對(duì)電氣設(shè)備控制系統(tǒng)的信號(hào)進(jìn)行實(shí)時(shí)采集和及時(shí)與PC 機(jī)進(jìn)行通信,建立電氣設(shè)備控制系統(tǒng)故障診斷系統(tǒng)便顯得特別重要。
3.1 BP神經(jīng)網(wǎng)絡(luò)模型
BP(Back Propagation)模型是一種最常用的人工神經(jīng)網(wǎng)絡(luò)模型,它的基本原理為利用誤差反向傳播算法,從而得到多層前向神經(jīng)網(wǎng)絡(luò)模型。在故障診斷方面使用BP模型在一定條件下能夠加強(qiáng)工作效率,使得故障診斷問題變得更加直觀。利用模糊理論與神經(jīng)網(wǎng)絡(luò)相結(jié)合的模糊神經(jīng)網(wǎng)絡(luò)解決建筑電氣設(shè)備故障的診斷,是一種智能化控制的手段,也將逐漸發(fā)展成為未來的趨勢(shì)[5]。其模型原理圖如圖1。
要建立模糊神經(jīng)網(wǎng)絡(luò)系統(tǒng),要根據(jù)相關(guān)理論或?qū)嶋H工作中的經(jīng)驗(yàn),將故障現(xiàn)象和故障原因相對(duì)應(yīng),作為系統(tǒng)的學(xué)習(xí)樣本。按照輸入與輸出相對(duì)應(yīng)的關(guān)系輸入學(xué)習(xí)樣本,系統(tǒng)經(jīng)過內(nèi)部的算法不斷提高精度,當(dāng)精度達(dá)到設(shè)定的要求時(shí),模糊神經(jīng)網(wǎng)絡(luò)系統(tǒng)的學(xué)習(xí)過程結(jié)束。此時(shí),將測(cè)試樣本的輸入數(shù)據(jù)放入系統(tǒng)輸入端,如果輸出數(shù)據(jù)與測(cè)試樣本基本相同,那么模糊神經(jīng)網(wǎng)絡(luò)系統(tǒng)建立成功。
在模糊神經(jīng)網(wǎng)絡(luò)系統(tǒng)的實(shí)際使用時(shí),必然會(huì)遇到輸入數(shù)據(jù)與樣本不同的狀況。根據(jù)內(nèi)部算法,系統(tǒng)將會(huì)找到與學(xué)習(xí)樣本最相似的一組數(shù)據(jù)作為參考,自主得到輸出數(shù)據(jù)。與此同時(shí),如果系統(tǒng)自主算出的結(jié)果得到采納,那么這組數(shù)據(jù)將會(huì)做為新的樣本存入數(shù)據(jù)庫,成為參考數(shù)據(jù)。
3.2 BP學(xué)習(xí)算法
目前,BP算法是應(yīng)用很廣泛、完善性比較高的神經(jīng)網(wǎng)絡(luò)訓(xùn)練算法,方便、容易實(shí)現(xiàn)、計(jì)算量小、并行性強(qiáng)是這個(gè)方法領(lǐng)先其他算法的優(yōu)勢(shì)。BP算法的基本原理[6]為先求解誤差函數(shù)的最小值,根據(jù)梯度下降法,按誤差對(duì)權(quán)值做負(fù)反饋。
BP算法需要依次根據(jù)輸入對(duì)輸出進(jìn)行矯正,也就是對(duì)每組數(shù)據(jù)都要計(jì)算比對(duì)。然而,全局誤差的梯度下降算法,要求連接權(quán)和閾值的矯正是在批量進(jìn)行學(xué)習(xí)樣本的輸入之后再進(jìn)行的,所以要修改各個(gè)連接權(quán)值。利用梯度下降法來修改各個(gè)連接權(quán)值,以便達(dá)到近似全局誤差的算法效果。全局誤差梯度下降算法流程如圖2所示。
4 結(jié) 語
電氣設(shè)備的故障診斷已經(jīng)成為值得重視的問題,為保證運(yùn)行系統(tǒng)能夠正常運(yùn)行,因此需要建立起更加科學(xué)完善的電氣設(shè)備管理系統(tǒng),逐漸減少電氣設(shè)備運(yùn)行出現(xiàn)故障的可能性,保障電力系統(tǒng)的穩(wěn)定能力,本文簡單介紹將模糊理論與神經(jīng)網(wǎng)絡(luò)結(jié)合,更好的解決電氣設(shè)備故障問題,結(jié)合傳感器檢測(cè)技術(shù)、自動(dòng)控制技術(shù)、通信與網(wǎng)絡(luò)技術(shù)等方法,建立電氣設(shè)備控制故障診斷系統(tǒng),希望可以早日應(yīng)用到生活中的建筑電氣設(shè)備故障診斷中去。
參考文獻(xiàn)
[1]電氣設(shè)備及控制電路常見故障分析[EB]. 電工學(xué)習(xí)網(wǎng).
[2]田景文.人工神經(jīng)網(wǎng)絡(luò)算法研究與應(yīng)用[M]. 北京理工大學(xué)出版社,2006.
[3]諸靜.模糊控制原理與應(yīng)用[M].機(jī)械工業(yè)出版社,1995.
[4]龍祥,錢志博.模糊理論在設(shè)備故障診斷神經(jīng)網(wǎng)絡(luò)中的典型應(yīng)用[J].廣東工業(yè)大學(xué)學(xué)報(bào),2006.
[5]陳流豪.神經(jīng)網(wǎng)絡(luò)BP算法研究綜述[J].電腦知識(shí)與技術(shù),2010.
【關(guān)鍵詞】靜態(tài)路由 網(wǎng)絡(luò)互聯(lián) 路由器 交換機(jī)
隨著計(jì)算機(jī)科學(xué)技術(shù)的發(fā)展和互聯(lián)網(wǎng)應(yīng)用的普及,21世紀(jì)初互聯(lián)網(wǎng)逐漸由高校、科研機(jī)構(gòu)普及到了各行各業(yè)的各大中小型企業(yè)及家庭。互聯(lián)網(wǎng)在人們的生活、學(xué)習(xí)、工作各方面都扮演著必不可少的角色,其權(quán)重在人們的各項(xiàng)活動(dòng)中的比重越來越大。因此,互聯(lián)網(wǎng)的安全建設(shè)至關(guān)重要。因此,互聯(lián)網(wǎng)中網(wǎng)絡(luò)設(shè)備的互聯(lián)工程越來越多,參與此工作的人員也相對(duì)增多。本文提出基于神州數(shù)碼網(wǎng)絡(luò)互聯(lián)設(shè)備的靜態(tài)路由實(shí)現(xiàn)進(jìn)行研究。可為一些初學(xué)者提供一些參考學(xué)習(xí)。
一、神州數(shù)碼網(wǎng)絡(luò)互聯(lián)設(shè)備實(shí)驗(yàn)室
神州數(shù)碼網(wǎng)絡(luò)有限公司(簡稱:DCN)是國內(nèi)領(lǐng)先的網(wǎng)絡(luò)設(shè)備制造商和解決方案提供商,是神州數(shù)碼控股旗下?lián)碛凶灾骶W(wǎng)絡(luò)品牌和知識(shí)產(chǎn)權(quán)的專業(yè)公司。DCN是神州數(shù)碼自有品牌,也是神州數(shù)碼主品牌下的子品牌之一。DCN將繼續(xù)專注數(shù)據(jù)通信市場(chǎng),為客戶提供業(yè)界領(lǐng)先的以太網(wǎng)交換機(jī)、路由器、網(wǎng)絡(luò)安全、應(yīng)用交付、無線網(wǎng)絡(luò)、IP融合通信、網(wǎng)絡(luò)管理等產(chǎn)品,致力打造成為全球領(lǐng)先的數(shù)據(jù)通信設(shè)備制造商和服務(wù)提供商。我校建立的網(wǎng)絡(luò)實(shí)驗(yàn)室就是以該公司的網(wǎng)絡(luò)設(shè)備布置并建設(shè)的。目前我校網(wǎng)絡(luò)實(shí)驗(yàn)室條件如下:三臺(tái)路由器DCR-2655,三臺(tái)三層交換機(jī)DCRS-5658,三臺(tái)二層交換機(jī)DCS-2111,一個(gè)24口集線架,9臺(tái)臺(tái)式機(jī),布線簡單。每臺(tái)臺(tái)式機(jī)電腦固定,分別有1-24號(hào)編有號(hào)碼的網(wǎng)線從布線板預(yù)留口伸出2米的長度,掩埋網(wǎng)線的另一端分別對(duì)應(yīng)集線架的24口。所有這些網(wǎng)絡(luò)互聯(lián)設(shè)備都集成固定在一個(gè)機(jī)架上。對(duì)于學(xué)生做網(wǎng)絡(luò)實(shí)驗(yàn)來說,我們充分利用現(xiàn)有實(shí)驗(yàn)條件進(jìn)行相關(guān)實(shí)驗(yàn),本文是針對(duì)學(xué)生在網(wǎng)絡(luò)實(shí)驗(yàn)室進(jìn)行的靜態(tài)路由實(shí)驗(yàn)進(jìn)行的研究。
二、靜態(tài)路由
靜態(tài)路由是指由用戶或網(wǎng)絡(luò)管理員手工配置的路由信息。當(dāng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)或鏈路的狀態(tài)發(fā)生變化時(shí),網(wǎng)絡(luò)管理員需要手工去修改路由表中相關(guān)的靜態(tài)路由信息。靜態(tài)路由信息在缺省情況下是私有的,不會(huì)傳遞給其他的路由器。當(dāng)然,網(wǎng)管員也可以通過對(duì)路由器進(jìn)行設(shè)置使之成為共享的。靜態(tài)路由一般適用于比較簡單的網(wǎng)絡(luò)環(huán)境,在這樣的環(huán)境中,網(wǎng)絡(luò)管理員易于清楚地了解網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),便于設(shè)置正確的路由信息[3]。
使用靜態(tài)路由的另一個(gè)好處是網(wǎng)絡(luò)安全保密性高。動(dòng)態(tài)路由因?yàn)樾枰酚善髦g頻繁地交換各自的路由表,而對(duì)路由表的分析可以揭示網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)和網(wǎng)絡(luò)地址等信息。因此,網(wǎng)絡(luò)出于安全方面的考慮也可以采用靜態(tài)路由。不占用網(wǎng)絡(luò)帶寬,因?yàn)殪o態(tài)路由不會(huì)產(chǎn)生更新流量。
三、靜態(tài)路由實(shí)現(xiàn)實(shí)例
實(shí)例基于終端PC操作系統(tǒng)WIN7,通過超級(jí)終端程序Hypertrm.exe運(yùn)行配置路由器。
(1)路由器-路由器配置靜態(tài)路由實(shí)例。通過兩臺(tái)路由器實(shí)現(xiàn)靜態(tài)路由實(shí)例,首先用路由器配置線將路由器的console口與臺(tái)式機(jī)的COM1端口相連接,進(jìn)行路由器A的配置。路由器A的配置代碼如下:
Router(config) Hostname RA RA(config)interface f0/0 RA(config-if)ip add 192.168.40.1 255.255.255.0 RA(config-if)no shut RA(config-if)exit RA(config)interface g0/3
RA(config-if)ip add 192.168.30.1 255.255.255.0 RA(config-if)no shut RA(config)exit
路由器B的配置代碼如下:
Router(config) Hostname RB RB(config)interface f0/0 RB(config-if)ip add 192.168.40.2 255.255.255.0 RB(config-if)no shut RB(config-if)exit RB(config)interface g0/3
RB(config-if)ip add 192.168.50.1 255.255.255.0 RB(config-if)no shut RB(config)exit
然后,配置兩臺(tái)路由器的靜態(tài)路由,配置代碼如:
RA# ip route 192.168.50.0 255.255.255.0 192.168.40.2
RB# ip route 192.168.30.0 255.255.255.0 192.168.40.1
這樣,兩臺(tái)路由器之間的靜態(tài)路由就配置好了。用網(wǎng)線分別連接兩臺(tái)路由器的f0/0接口,接口g0/3分別接兩臺(tái)終端PC,并分別配置兩臺(tái)PC的IP地址為192.168.30.8/24和192.168.50.8/
24,網(wǎng)關(guān)分別配置為192.168.30.1/24和192.168.50.1/24。配置完成以后,兩臺(tái)PC互相ping對(duì)方,一共四個(gè)數(shù)據(jù)包都沒有丟失,說明兩臺(tái)主機(jī)是互通的。這就是說兩臺(tái)路由器f0/0端口相連,另一端口g0/3分別連接兩臺(tái)主機(jī)的網(wǎng)絡(luò)拓?fù)渑渲孟嚓P(guān)的端口ip及主機(jī)ip以后,在兩臺(tái)路由器上分別正確的配置靜態(tài)路由協(xié)議以后,兩臺(tái)主機(jī)互相能ping通,說明該靜態(tài)路由協(xié)議實(shí)驗(yàn)配置成功。
(2)路由器-三層交換機(jī)配置靜態(tài)路由實(shí)例。三層交換機(jī)就是具有部分路由器功能的交換機(jī),三層交換機(jī)的最重要目的是加快大型局域網(wǎng)內(nèi)部的數(shù)據(jù)交換,所具有的路由功能也是為這目的服務(wù)的,能夠做到一次路由,多次轉(zhuǎn)發(fā)。對(duì)于數(shù)據(jù)包轉(zhuǎn)發(fā)等規(guī)律性的過程由硬件高速實(shí)現(xiàn),而像路由信息更新、路由表維護(hù)、路由計(jì)算、路由確定等功能,由軟件實(shí)現(xiàn)。三層交換技術(shù)就是二層交換技術(shù)+三層轉(zhuǎn)發(fā)技術(shù)。出于安全和管理方便的考慮,主要是為了減小廣播風(fēng)暴的危害,必須把大型局域網(wǎng)按功能或地域等因素劃成一個(gè)個(gè)小的局域網(wǎng),這就使VLAN技術(shù)在網(wǎng)絡(luò)中得以大量應(yīng)用,而各個(gè)不同VLAN間的通信都要經(jīng)過路由器來完成轉(zhuǎn)發(fā),隨著網(wǎng)間互訪的不斷增加。單純使用路由器來實(shí)現(xiàn)網(wǎng)間訪問,不但由于端口數(shù)量有限,而且路由速度較慢,從而限制了網(wǎng)絡(luò)的規(guī)模和訪問速度。基于這種情況三層交換機(jī)便應(yīng)運(yùn)而生,三層交換機(jī)是為IP設(shè)計(jì)的,接口類型簡單,擁有很強(qiáng)二層包處理能力,非常適用于大型局域網(wǎng)內(nèi)的數(shù)據(jù)路由與交換,它既可以工作在協(xié)議第三層替代或部分完成傳統(tǒng)路由器的功能,同時(shí)又具有幾乎第二層交換的速度,且價(jià)格相對(duì)便宜些。
因?yàn)閷?shí)驗(yàn)室條件限制,兩臺(tái)路由器已經(jīng)被部分同學(xué)占用進(jìn)行上述靜態(tài)路由協(xié)議配置的實(shí)驗(yàn),另一部學(xué)生,利用一臺(tái)路由器和一臺(tái)三層交換機(jī)進(jìn)行靜態(tài)路由協(xié)議的配置實(shí)驗(yàn)。依據(jù)是三層交換機(jī)具有簡單的路由功能,其中,支撐靜態(tài)路由協(xié)議?;诖耍酉聛?,實(shí)驗(yàn)路由器-三層交換機(jī)的配置實(shí)驗(yàn),檢驗(yàn)其是否能配置成功?
首先用路由器配置線將路由器的console口與臺(tái)式機(jī)的COM1端口相連接,進(jìn)行路由器A的配置。路由器A的配置代碼如下:
Router(config) Hostname RA RA(config)interface f0/0 RA(config-if)ip add 192.168.40.1 255.255.255.0 RA(config-if)no shut RA(config-if)exit RA(config)interface g0/3
RA(config-if)ip add 192.168.30.1 255.255.255.0 RA(config-if)no shut
然后用交換機(jī)配置線將交換機(jī)的console口與臺(tái)式機(jī)的COM1端口相連接,進(jìn)行三層交換機(jī)的配置。三層交換機(jī)Sw的配置代碼如下:
DCRS-2655(config)hostname Sw Sw(config)ip option enable Sw(config)vlan 10
Sw(config-vlan)ex Sw(config)vlan 20 Sw(config-vlan)ex Sw(config)int e1/0/2
Sw(config-if)switchport mode access Sw(config-if)swichport access vlan 10 Sw(config-if)ex
Sw(config)int e1/0/6 Sw(config-if)switchport mode access Sw(config-if)swichport access vlan 20 Sw(config)ex Sw(config)int vlan 10 Sw(config-if)ip add 192.168.40.2 255.255.255.0
Sw(config-if)no shut Sw(config-if)ex Sw(config)int vlan 20
Sw(config-if)ip add 192.168.50.1 255.255.255.0 Sw(config-if)no shut
接下來配置靜態(tài)路由
路由器:ip route 192.168.50.0 255.255.255.0 192.168.
40.2
交換機(jī):ip route 192.168.30.0 255.255.255.0 192.168.
40.1
這樣,路由器和三層交換機(jī)之間的靜態(tài)路由就配置好了。用網(wǎng)線分別連接路由器的f0/0接口和三層交換機(jī)的 e1/0/2端口,路由器接口g0/3連接一臺(tái)終端PC1,三層交換機(jī)的端口e1/0/6連接另一臺(tái)終端PC2,并分別配置兩臺(tái)PC的IP地址為192.168.30.
8/24和192.168.50.8/24,網(wǎng)關(guān)分別配置為192.168.30.1/24和192.168.50.1/24。配置完成以后,兩臺(tái)PC互相ping對(duì)方,結(jié)果都是通的。說明該靜態(tài)路由協(xié)議配置成功。異種網(wǎng)絡(luò)互聯(lián)設(shè)備可以成功配置靜態(tài)路由協(xié)議,并能正確路由,以此在建立的數(shù)據(jù)鏈路中傳輸數(shù)據(jù)。
四、總結(jié)
通過以上配置實(shí)例知道,靜態(tài)路由協(xié)議不僅在路由器-路由器配置實(shí)驗(yàn)中能夠成功配置,并且在具有路由功能的工作于ISO模型第二層數(shù)據(jù)鏈路層的網(wǎng)絡(luò)設(shè)備,同樣也能配置靜態(tài)路由協(xié)議,與配置靜態(tài)路由協(xié)議的路由器互聯(lián),能實(shí)現(xiàn)網(wǎng)絡(luò)的路由。靜態(tài)路由表在開始選擇路由之前就被網(wǎng)絡(luò)管理員建立,并且只能由網(wǎng)絡(luò)管理員更改,所以只適于網(wǎng)絡(luò)傳輸狀態(tài)比較簡單的環(huán)境。靜態(tài)路由具有更高的安全性。在使用靜態(tài)路由的網(wǎng)絡(luò)中,所有要連到網(wǎng)絡(luò)上的路由器都需在鄰接路由器上設(shè)置其相應(yīng)的路由。因此,在某種程度上提高了網(wǎng)絡(luò)的安全性。但是,大型和復(fù)雜的網(wǎng)絡(luò)環(huán)境通常不宜采用靜態(tài)路由。一方面,網(wǎng)絡(luò)管理員難以全面地了解整個(gè)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu);另一方面,當(dāng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)和鏈路狀態(tài)發(fā)生變化時(shí),路由器中的靜態(tài)路由信息需要大范圍地調(diào)整,這一工作的難度和復(fù)雜程度非常高。當(dāng)網(wǎng)絡(luò)發(fā)生變化或網(wǎng)絡(luò)發(fā)生故障時(shí),不能重選路由,很可能使路由失敗。
參考文獻(xiàn):
關(guān)鍵詞:貝葉斯神經(jīng)網(wǎng)絡(luò);60Co-γ射線;無防腐劑香腸;網(wǎng)絡(luò)預(yù)測(cè)
引言
食品輻照技術(shù)是20世紀(jì)發(fā)展起來的一種新型滅菌保鮮技術(shù)。采用輻射加工技術(shù)手段,運(yùn)用高能射線如x-射線、γ-射線等對(duì)食品進(jìn)行加工處理,在能量的傳遞和轉(zhuǎn)移過程中,產(chǎn)生理化效應(yīng)和生物效應(yīng)達(dá)到殺蟲、殺菌的目。因?yàn)槭抢錃⒕侄?,所以有效的提高了食品衛(wèi)生質(zhì)量,保持營養(yǎng)品質(zhì)及風(fēng)味和延長貨架期。本文采用無防腐劑的香腸作為對(duì)象,排除了化學(xué)防腐劑對(duì)保鮮效果影響,同時(shí)為了食品加工行業(yè)發(fā)展提供方向,不添加化學(xué)防腐效果成分的同時(shí)也可以采用輻照的方法有效提升貨架期,有效提高企業(yè)效益,延伸銷售鏈;對(duì)于不同種類的香腸制品,從肉質(zhì)到成分,都會(huì)有所差別,通過大量輻照試驗(yàn)獲得輻照工藝的方法,不僅耗時(shí)長,而且檢驗(yàn)指標(biāo)及檢驗(yàn)方法也過于繁瑣,因此結(jié)合采用人工智能神經(jīng)網(wǎng)絡(luò)算法,在有限次數(shù)實(shí)驗(yàn)數(shù)據(jù)的基礎(chǔ)上,建立不同劑量60Co-γ射線對(duì)香腸品質(zhì)影響的規(guī)律模型為科學(xué)輻照提供理論依據(jù)。
1 實(shí)驗(yàn)方法與理化指標(biāo)的檢測(cè)
1.1 樣品輻照
本項(xiàng)目采用不含任何防腐效果的特制香腸為對(duì)象,在黑龍江省科學(xué)院技術(shù)物理研究所輻照中心進(jìn)行。采用靜態(tài)堆碼式60Co-γ放射源,跟蹤劑量計(jì)為Ag2Cr2O7經(jīng)中國劑量科學(xué)研究院丙氨酸劑量計(jì)(NDAS)傳遞比對(duì)校準(zhǔn),分別采用不同劑量(2-6)kGy,進(jìn)行靜態(tài)輻照。完成輻照2天內(nèi)進(jìn)行理化指標(biāo)的檢測(cè),在(22.0±1)℃下保存30天后進(jìn)行微生物指標(biāo)的檢測(cè)。
1.2 理化指標(biāo)及微生物指標(biāo)測(cè)定方法
1.2.1 菌落總數(shù),參照國家標(biāo)準(zhǔn)GB/T4789.2-2008采取實(shí)驗(yàn)方法測(cè)定菌落總數(shù)。
1.2.2 水分含量,參照國家標(biāo)準(zhǔn)GB/T6965.15可用蒸餾法或直接干燥法。本項(xiàng)目采用直接烘干法。
1.2.3 氯化鈉含量,參照國家標(biāo)準(zhǔn)GB/T9695.8進(jìn)行測(cè)定,采用水浸出后用硝酸鹽標(biāo)準(zhǔn)溶液滴定法測(cè)定。
1.2.4 蛋白質(zhì),參照國家標(biāo)準(zhǔn)GB/T9695.11進(jìn)行測(cè)定。
1.2.5 菌落總數(shù),參照GB4789.2-2010進(jìn)行測(cè)定。
1.3 檢測(cè)結(jié)果與數(shù)據(jù)處理
采用以上檢測(cè)方法進(jìn)行檢測(cè),由于實(shí)驗(yàn)過程產(chǎn)生個(gè)別認(rèn)為誤差,利用matlab軟件plot函數(shù)對(duì)每組數(shù)據(jù)進(jìn)行擬合,將誤差較大的個(gè)別數(shù)據(jù)進(jìn)行剔除,最終得到50組數(shù)據(jù),部分?jǐn)?shù)據(jù)如表1。
表1 60Co-γ射線輻照保鮮無防腐劑香腸檢測(cè)結(jié)果
2 神經(jīng)網(wǎng)絡(luò)算法
2.1 BP神經(jīng)網(wǎng)絡(luò)
通常BP神經(jīng)網(wǎng)絡(luò)具有3層結(jié)構(gòu),分別為輸入層、隱含層和輸出層。通常來說隱含層采用Sigmoid函數(shù),輸出層采用Pureline函數(shù),因?yàn)榉?hào)函數(shù)標(biāo)準(zhǔn)輸入、輸出現(xiàn)代為[0,1],因此在學(xué)習(xí)過程中,通過轉(zhuǎn)化層將輻照工藝參數(shù)進(jìn)行轉(zhuǎn)化限定區(qū)間,避開網(wǎng)絡(luò)輸出的飽和區(qū)。五層神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)如圖1。
2.2 性能指標(biāo)
性能指數(shù)是衡量網(wǎng)絡(luò)性能的量化標(biāo)準(zhǔn),BP神經(jīng)網(wǎng)絡(luò)一般采用網(wǎng)絡(luò)軍方誤差作為性能指標(biāo):
式中:Ed為網(wǎng)絡(luò)的均方誤差;n為學(xué)習(xí)集體樣本總數(shù),tp為第P組訓(xùn)練的期望輸出值,ap為第P組的實(shí)際輸出值。影響神經(jīng)網(wǎng)絡(luò)泛化能力主要依賴于網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練樣本的特性,因此可以選擇合適的訓(xùn)練策略和優(yōu)化網(wǎng)絡(luò)結(jié)構(gòu)來提高其泛化能力。本文選取貝葉斯正則化算法對(duì)BP神經(jīng)網(wǎng)絡(luò)進(jìn)行修正,網(wǎng)絡(luò)性能指數(shù)變?yōu)椋?/p>
式中:w為網(wǎng)絡(luò)的權(quán)值向量,EW=m-1■?棕■■為網(wǎng)絡(luò)所有權(quán)值的均方誤差,其中m為網(wǎng)絡(luò)權(quán)值的總數(shù),Wj為網(wǎng)絡(luò)權(quán)值,a和b為正則化系數(shù),其大小直接影響訓(xùn)練效果。
2.3 貝葉斯正則化BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練步驟
(1)確定網(wǎng)絡(luò)結(jié)構(gòu),初始化超參數(shù)α=0和β=1,根據(jù)先驗(yàn)分布對(duì)網(wǎng)絡(luò)參數(shù)賦初值。
(2)用BP算法訓(xùn)練網(wǎng)絡(luò)使總誤差F(W)最小。
(3)利用高斯牛頓逼近法計(jì)算出有效參數(shù)個(gè)數(shù)。
(4)計(jì)算超參數(shù)α和β的新的估計(jì)值。
(5)重復(fù)執(zhí)行(2)、(3)、(4)直到達(dá)到所需精度。
貝葉斯方法正則化神經(jīng)網(wǎng)絡(luò)是個(gè)迭代過程,每個(gè)迭代過程總誤差函數(shù)隨著超參數(shù)的變化而變化,最小點(diǎn)也在變化,網(wǎng)絡(luò)的參數(shù)也在不斷修正,最終達(dá)到總誤差函數(shù)在迭代過程中沒用較大改變。目前在網(wǎng)絡(luò)結(jié)構(gòu)的選擇方面還沒有理想的方法,在實(shí)際工作中常常需要用試驗(yàn)的方法確定最佳的網(wǎng)絡(luò)結(jié)構(gòu),因此可采用不同的網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)行網(wǎng)絡(luò)訓(xùn)練,然后比較這些網(wǎng)絡(luò)模型的顯著度,選擇顯著度較大的網(wǎng)絡(luò)作為模型。
3 神經(jīng)網(wǎng)絡(luò)建模及預(yù)測(cè)
通過上述實(shí)驗(yàn)獲得的50組數(shù)據(jù)中,45組數(shù)據(jù)作為人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練樣本,另選擇其他5組數(shù)據(jù)作為檢驗(yàn)樣本,運(yùn)用MATLAB軟件,進(jìn)行人工神經(jīng)網(wǎng)絡(luò)的訓(xùn)練和預(yù)測(cè)。網(wǎng)絡(luò)輸入劑量、劑量率,輸出為水分、氯化鈉含量,通過應(yīng)用均方差函數(shù)比較目標(biāo)值和預(yù)測(cè)值的差異,計(jì)算目標(biāo)值與預(yù)測(cè)值間的誤差,觀察網(wǎng)絡(luò)模型對(duì)訓(xùn)練情況,網(wǎng)絡(luò)擬合圖性能進(jìn)行評(píng)價(jià)。
網(wǎng)絡(luò)訓(xùn)練結(jié)果顯示,經(jīng)過1500步訓(xùn)練后,網(wǎng)絡(luò)誤差平方和均值為5×10-3,達(dá)到了設(shè)定的最小訓(xùn)練目標(biāo)值。網(wǎng)絡(luò)訓(xùn)練完畢后,得到數(shù)學(xué)模型后,利用剩余5組數(shù)據(jù)進(jìn)行預(yù)測(cè)驗(yàn)證,網(wǎng)絡(luò)訓(xùn)練效果如圖2-5所示。
4 結(jié)束語
采用輻照的方法進(jìn)行無防腐劑香腸保質(zhì)期的時(shí)間跟輻照劑量相關(guān),采用4kGy的劑量進(jìn)行輻照可使香c的保質(zhì)期達(dá)到1個(gè)月以上,且香腸的顏色仍在可接受范圍內(nèi),說明輻照方法有效的提高了香腸的衛(wèi)生質(zhì)量,延長保質(zhì)期。采用神經(jīng)網(wǎng)絡(luò)建立了香腸輻照工藝與理化、微生物指標(biāo)的模型,并通過實(shí)驗(yàn)驗(yàn)證了模型的準(zhǔn)確性,為進(jìn)一步確定輻照工藝提供理論支持。
參考文獻(xiàn)
[1]2015-2020年中國肉制品市場(chǎng)現(xiàn)狀及戰(zhàn)略咨詢報(bào)告[R].北京:中國產(chǎn)業(yè)信息網(wǎng),2015.
[2]郭淑珍.輻照保藏五花肉的品質(zhì)特性及影響因素的研究[D].四川農(nóng)業(yè)大學(xué),2007.
[3]賈巧喚,任石茍.我國輻照食品的研究現(xiàn)狀及發(fā)展前景[J].食品工程,2008(4):12-14.
[4]陳秀蘭,曹宏.鵝肉制品的輻照保質(zhì)研究[J].核科學(xué)報(bào),2005(4):371-374.
[5]田 ,梁飛,盧江.人工神經(jīng)網(wǎng)絡(luò)建模結(jié)合遺傳算法優(yōu)化崗松油環(huán)糊精包合物制備工藝參數(shù)[J].中國醫(yī)藥大學(xué)學(xué)報(bào),2011(4):324-328.
級(jí)別:部級(jí)期刊
榮譽(yù):中國期刊全文數(shù)據(jù)庫(CJFD)
級(jí)別:北大期刊
榮譽(yù):中國優(yōu)秀期刊遴選數(shù)據(jù)庫
級(jí)別:統(tǒng)計(jì)源期刊
榮譽(yù):中國優(yōu)秀期刊遴選數(shù)據(jù)庫
級(jí)別:北大期刊
榮譽(yù):百種重點(diǎn)期刊
級(jí)別:北大期刊
榮譽(yù):Caj-cd規(guī)范獲獎(jiǎng)期刊